# Development of Baseline Time Series for the St. Marks River Rise Minimum Flows Evaluation

Prepared for: Northwest Florida Water Management District 81 Water Management Drive Havana, FL 32333-4712

> Prepared by: Janicki Environmental, Inc. 1155 Eden Isle Drive NE St. Petersburg, FL 33704

> > April 2018

# 1 Introduction and Objectives

The Northwest Florida Water Management District (District) is developing minimum flows for the St. Marks River Rise (Rise). The minimum flows will address protection of water resources affected by reduced spring flows, including those in the downstream freshwater and estuarine reaches of the St. Marks River. This current document provides the results of a series of Tasks, part of Task Order (TO) #4, directed at developing a baseline flow time series for the Rise for use in minimum flow scenario evaluation. The Tasks performed were as follows:

- QA/QC evaluation of existing rainfall, flow, evapotranspiration, and Floridan aquifer level to ensure confidence in the data used for baseline flow development;
- Trend tests on long-term flow data from the St. Marks River at Newport USGS gage, rainfall data from nearby monitoring sites, available evapotranspiration data, and Floridan aquifer levels with sufficient periods of record;
- Development of technically sound and defensible relationships between flows at the longterm Newport USGS gage just downstream of the Rise and shorter-term flows from just upstream of the St. Marks River swallet, and spring discharge from the Rise;
- Development of a long-term flow record for the Rise spring discharge utilizing data collected by the District and USGS and the relationships developed between flows above the swallet and flows at the Rise; and
- Assessment of potential groundwater withdrawal impacts on the Rise spring discharge using water budget information and results from the trend and time series analyses, with the assessment results used to adjust the long-term flow record to remove withdrawal effects, if present, and create a long-term baseline (unimpacted) flow record of Rise spring discharge.

# 2 Data QA/QC Evaluation

The data to be used in the development of the baseline unimpacted spring flow record include rainfall, groundwater levels, evapotranspiration, and river flow. The datasets compiled for this effort have been evaluated, including developing time-series plots for each site and data type. The time series plots are provided as Attachment 1, and the finalized datasets are provided as Excel files or CSV files in the accompanying directory. Brief summaries of each dataset are provided in the following.

The available data are sufficient to complete the goal of developing the long-term unimpacted spring flow timeseries. Additional data evaluation follows in the next section with the discussion of the trend tests.

## NWS Rainfall Monthly Data in file "NWS NWFWMD MonthlyRain.xlsx"

Station USC00091463, Name CAIRO, GA US: 1940 - 2016 Significant period of missing data as follows (not counting single months scattered throughout the record) missing JUL73 - MAY88

Station USC00091500, Name CAMILLA 3 SE, GA US: 1940 - 2016 Significant period of missing data as follows (not counting single months scattered throughout the record) missing NOV40 - MAY41

Station USC00085880, Name MONTICELLO 10 SW, FL US: 2007 - 2016 Significant period of missing data as follows (not counting single months scattered throughout the record) missing JAN07 - JUL07 FEB16 - DEC16

Station USC00096087, Name MOULTRIE 2 ESE, GA US: 1940 - 2016 Significant period of missing data as follows (not counting single months scattered throughout the record) missing MAR05 - JUL05 FEB16 - JUL16

Station USC00087025, Name PERRY, FL US: 1940 - 2016 Significant period of missing data as follows (not counting single months scattered throughout the record) missing JAN49 - DEC56

Station USC00097276, Name QUITMAN 2 NW, GA US: 1940 - 2010

Significant periods of missing data as follows (not counting single months scattered throughout the record)

missing NOV74 - MAY75 AUG75 - DEC75

Station USC00087869, Name ST MARKS NWR, FL US: 2002 - 2016

Significant periods of missing data as follows (not counting single months scattered throughout the record)

missing JAN42 - JUL42 JAN43 - DEC45

Station USC00093805, Name TALLAHASSEE REGIONAL AIRPORT, FL US: 1942 - 2016 Significant periods of missing data as follows (not counting single months scattered throughout the record)

- missing JAN02-JUN02, OCT03, JUN04, JUL08, MAY11, AUG11, OCT11-FEB12, MAR13, JUN13-JUL13, JUN14-JUL14, MAY15-JAN16, MAR16-APR16, JUN16-SEP16, DEC16
- Station US1GATH0004, Name THOMASVILLE 5.1 ESE, GA US: 2009 2016 No significant periods of missing data

Station USC00098703, Name TIFTON, GA US: 1940 - 2016 No significant periods of missing data

## District Rainfall 5-Minute Data in file "District\_5min\_rainfall.csv" (very large)

Station 602 (sensor 11285): 01JAN88:00:00 - 30APR17:23:55

missing 02DEC88:09:55 - 03DEC88:09:40 02JUN00:09:50 - 05JUL00:10:00

Station 605 (sensor 11288): 01JAN88:00:00 - 30APR17:23:55 missing 05FEB09:09:55 05FEB91:10:00 21MAR06:14:40 23MAR12:08:00 02APR12:09:30 - 02APR12:09:45

Station 606 (sensor 11289): 03APR87:17:00 - 30APR17:23:55 missing 23JUL87:09:30 - 23JUL87:09:55 08JAN88:15:05 - 08JAN89:15:25 14AUG89:12:40 - 15AUG89:12:35 06JAN90:23:25 - 08JAN90:10:55 06AUG90:15:50 - 13AUG90:10:55 05JUL94:23:10 - 03JAN00:11:55 27DEC00:06:10 - 31DEC00:23:55 03MAR01:08:50 - 07MAR01:11:10 27JUL02:10:00 - 13AUG02:15:30 for period 29OCT02:13:55 - 01OCT14:12:55, data were collected every 10 minutes

Station 610 (sensor 11293): 01JAN87:14:45 -30APR17:23:55 missing 03DEC87:15:10 - 03DEC87:15:30

Station 613 (sensor 11296): 03FEB87:14:25 - 30APR17:23:55 missing 02DEC87:15:55 - 03DEC87:12:50 16DEC11:15:35 - 16DEC11:15:40 22DEC11:12:35

Station 616 (sensor 11299): 30MAR87:12:00 - 30APR17:23:55 missing 30JUL87:14:35 - 21AUG87:12:55

 30J0167:14:33 - 21A0G87:12:33

 19FEB88:08:50 - 22FEB88:14:55

 13MAY88:12:25 - 09JUN88:15:55

 21JUN88:13:25 - 18AUG88:14:55

 04FEB92:12:40

 03NOV92:13:15

 03NOV92:13:15

 05APR05:19:00 - 14APR05:09:25

 20JUN10:11:15 - 27JUN10:02:00

 12DEC11:12:20 - 19DEC11:05:10

 10DEC11:20:40 - 26DEC11:15:00

 09AUG13:02:45 - 09AUG13:13:05

Evapotranspiration Daily Data from IFAS FAWN Monticello in file"ET\_IFAS\_Monticello.xlsx"

23APR03 - 30AUG17

missing 10JUL03 -29JUL03 27DEC03 - 06JAN04 12JAN04 - 03FEB04 28FEB04 - 26APR04 29MAY04 - 03JUN04 05JUN04 - 29JUL04 02AUG04 - 10JUN05 11AUG05 - 15AUG05 17MAR06 - 26MAR06 09JUN07 - 12JUN07

## Groundwater Elevation all data in "NWFWMD Groundwater Elevation Data.xlsx"

NWFWMD Site 671: JUN61 - MAY17 NWFWMD Site 2136: JUN81 - JUN91 NWFWMD Site 2536: JUN85 - JUN91 NWFWMD Site 3861: JAN60 - MAY90 NWFWMD Site 7498: FEB00 - FEB17 NWFWMD Site 7498 Continuous (15-minute): 14AUG14:12:30 - 11JUL17:10:30 NWFWMD Site 8419: MAY03 - MAY17 St. Marks Newport daily: 03OCT56 - 10AUG17 SRWMD SRPinckneyHill: FEB88 - FEB12 Monthly, MAR12 - JUL17 Daily

## Flows

District Grabs above the Swallet: 09APR03 - 25FEB14 "**Q\_District\_Grab\_above\_Swallet.xlsx**" USGS 02326885 Daily St. Marks above the Swallet: 04JUN15 - 30JUL17 "**Q\_USGS above Swallet.xlswx**"

USGS 02326900 Daily at St. Marks at Newport: 01OCT56 - 10AUG17 "FlowStMarksNewport.xlsx"

## 3 Trend Tests of Data to be Used for Spring Flow Time Series Development

As part of the work effort to develop the unimpacted spring flow record for use in modeling evaluation of reduced flow scenarios in aid of minimum flows development, an evaluation of time series trends in rainfall, groundwater levels, evapotranspiration, and river flow was completed. The sites evaluated are provided in Figure 1. This section provides a synthesis of results from application of the Seasonal Kendall Tau trend test (SKT: Hirsch and Slack, 1984). The trend tests were conducted to characterize the period of record of empirical data collections within the St. Marks region with respect to identifying any monotonic trends in the timeseries over time.

## 3.1 Methods

Trend analysis and associated exploratory data analysis serve to investigate and potentially account for the relative contributions of anthropogenic and climatic (i.e., rainfall) factors to changes as reflected in observed time series. The first step in the trend analysis was examination of the data to be used. The data (data listing provided in Section 2 above) employed in the trend analyses were visually examined by producing time series plots of all variables of interest at each site, as provided in Attachment 1. Trend analyses were completed using the nonparametric SKT test. For these analyses, the null hypotheses for each test was that there was no trend, so that the alternative to the null hypotheses was that there was a trend, either increasing or decreasing. Seasons were defined as the twelve months of the year. The SKT procedure computes a tau statistic and a p-value and slope for each station/parameter combination. When the p-value is < 0.05, the slope is considered statistically significant for the parameter being tested. A positive slope indicates an increasing monotonic trend, while a negative slope indicates a decreasing monotonic trend (assuming the pvalue indicates statistical significance). The SKT was implemented using the open source software R package RKT (Marchetto, 2015; R Core Team, 2013). Missing data are allowed in the time series. Significance of the trend test is determined by comparing the p-value reported after adjustment for serial autocorrelation (termed "Correction for inter-block covariance") to an alpha level of 0.05. A minimum of ten years of data is required to evaluate serial autocorrelation.

For rainfall analysis the monthly total rainfall reported in inches was evaluated, while for streamflow, evapotranspiration, and groundwater levels, the monthly median values were evaluated. The entire available period of record was considered for trend testing. Descriptive statistics and graphics were generated for each station evaluated and are provided in the attachments associated with each data type (Attachments 2-8). This information includes: 1) detailed sampling frequency tables, 2) time series plots, 3) seasonal (i.e. monthly) boxplots to assess seasonality, 4) univariate statistics for the data distribution including histograms and cumulative distribution function (CDF) plots, and 5) correlograms to evaluate the potential serial correlation among observations through time going back 15 months.




Figure 1. Locations of data collection sites used in trend test evaluations.

## 3.2 Results

#### 3.2.1 Streamflow Trends

The only streamflow site with a long-term time series (i.e. 1956 - present) available for trend testing was the St. Marks River near Newport gage (USGS 02326900) (Figure 2). The daily time series is complete except for a data gap beginning in November 1994 and ending in July 1996, and a smaller gap between October 2004 and May 2005. The median discharge value over the timeseries was 611 cfs, with a maximum value of 5,820 cfs, as illustrated in the descriptive plots of the univariate daily data provided in Figure 3. Seasonal boxplots illustrate the seasonality in flows with tendency for higher flows in the spring (March and April) and in late summer (August and September) (Figure 4). After calculating the monthly median flow, a correlogram of the monthly data was generated (Figure 5) which suggested that the monthly data were highly correlated up to six months. Results of SKT trend testing on the monthly data indicated no significant trends in the long-term time series (p-value = 0.76; Figure 6). Detailed descriptive results are provided in Attachment 2.

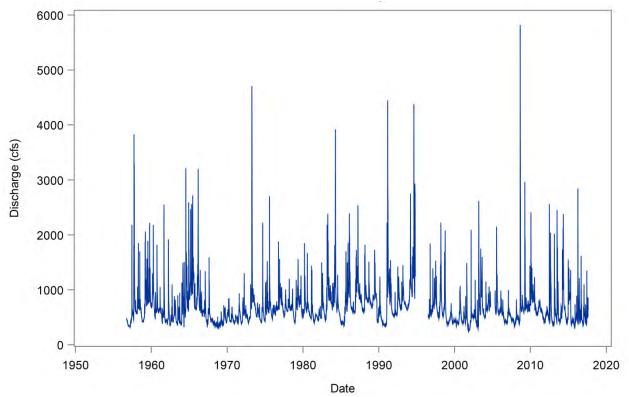



Figure 2. Time series of daily flows (cfs) between 1956 and 2017 at the St. Marks River near Newport site (USGS 02326900).

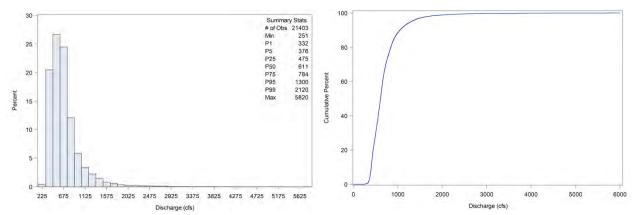



Figure 3. Univariate statistics for daily discharge at St. Marks River near Newport site (USGS gage 02326900).

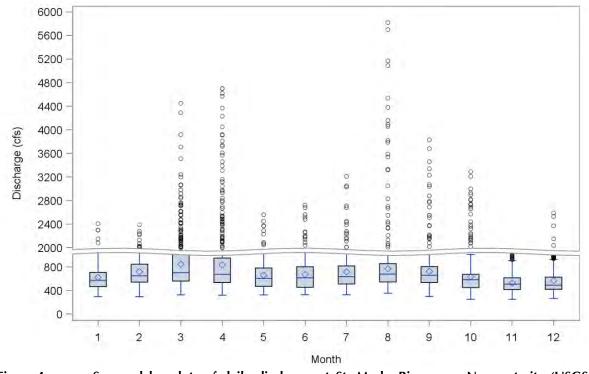
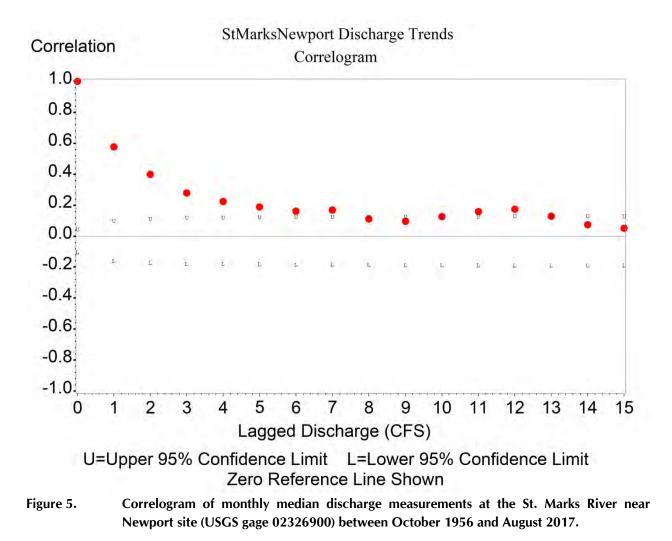




Figure 4. Seasonal boxplots of daily discharge at St. Marks River near Newport site (USGS gage 02326900).



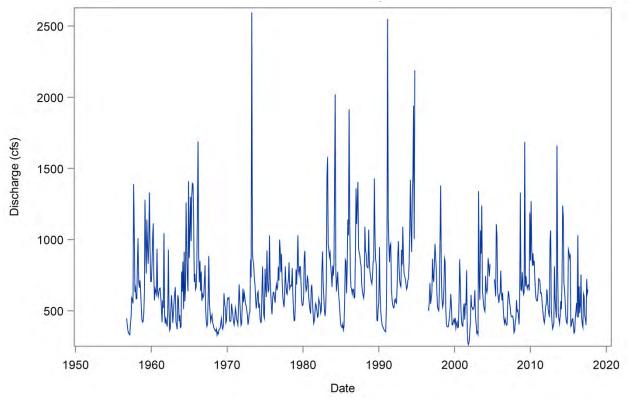



Figure 6. Time series of monthly median discharge at St. Marks River near Newport with SKT trend test results.

## 3.2.2 Evapotranspiration

Evapotranspiration data used for trend testing were daily values calculated from measured meteorological data collected by the University of Florida Institute of Food and Agricultural Science (IFAS) Florida Automated Weather Network (FAWN) Monticello site. The time series is relatively complete between 2003 and 2017 other than some missing daily values between 2003 and 2005. Evapotranspiration rates ranged from 0.02 to 0.23 inches per day with a median value of 0.1 inch as illustrated in the descriptive plots of the univariate daily data (Figure 7). Seasonal boxplots illustrate heavily seasonal evapotranspiration rates as expected with evapotranspiration rates peaking during June and July (Figure 8). After calculating the monthly median evapotranspiration, a correlogram of the monthly data was generated (Figure 9) which suggested that the monthly data were highly correlated with negative correlation at 6 months and positive correlation at 12 months, reiterating the strong seasonal signal in evapotranspiration. Results of SKT trend testing on the monthly data suggested no significant trend in the time series (p-value = 0.432: Figure 10). Detailed descriptive results are provided in Attachment 3.

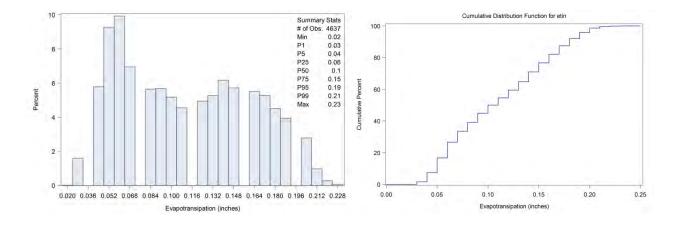
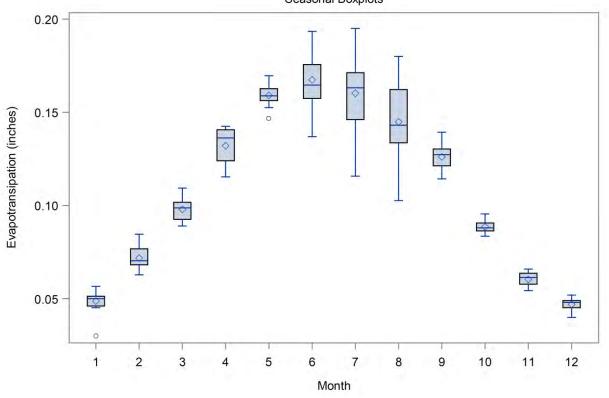




Figure 7. Univariate statistics for daily evapotranspiration at Monticello.



Seasonal Boxplots

Figure 8. Seasonal boxplots of daily evapotranspiration at Monticello.

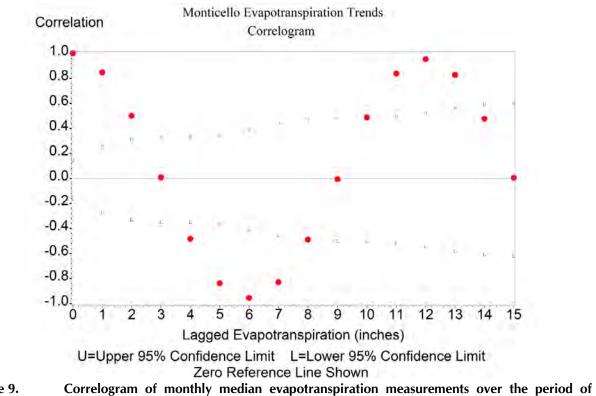
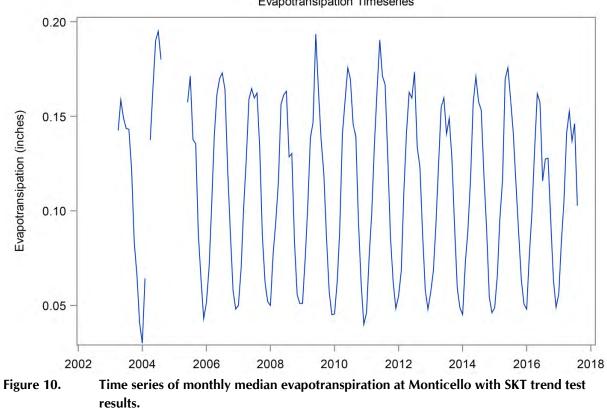




Figure 9. record.



**Evapotransipation Timeseries** 

3-8

## 3.2.3 Rainfall

Rainfall trends were evaluated for both National Weather Service (NWS) and District gages.

## District Gages

A total of six District-maintained rainfall gauges were analyzed for trends (Table 1). The period of record for each District gage is presented in Table 1 along with the number of monthly observations (i.e. "Nobs"). A timeseries plot of the monthly values is provided along with the results of the trend test in Figure 11. There were no statiscally significant trends in the District rainfall time series. Descriptive statistics and plots for each of the 6 District rain gages are provided in Attachment 4.

| Obs | station               | Nobs | mindate    | maxdate    |
|-----|-----------------------|------|------------|------------|
| 1   | Herron Steel 11285    | 352  | 01/01/1988 | 04/01/2017 |
| 2   | Life Fellowship 11288 | 352  | 01/01/1988 | 04/01/2017 |
| 3   | Lake Jackson 11289    | 362  | 03/01/1987 | 04/01/2017 |
| 4   | Tuck Property 11293   | 364  | 01/01/1987 | 04/01/2017 |
| 5   | Limoges Dr 11296      | 363  | 02/01/1987 | 04/01/2017 |
| 6   | Apalachee Park 11299  | 361  | 03/01/1987 | 04/01/2017 |

 Table 1.
 Period of record and number of observations for District rain gages.

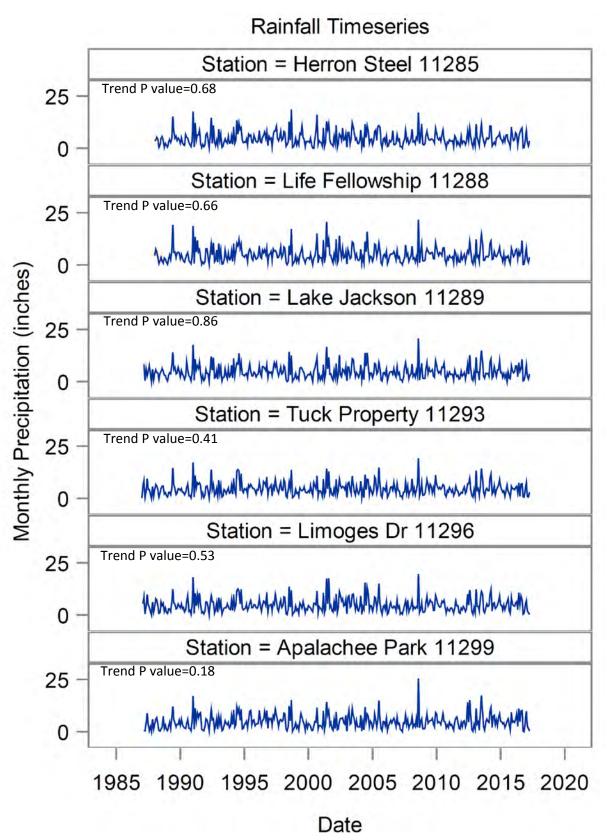



Figure 11.

Results of SKT trend test for District rain gages.

## NWS Gages

A total of 10 National Weather Service (NWS) rain gages were investigated for trends. Two stations (US1GATH004 and USC00085880) contained data records of length less than 10 years which precluded trend analysis (Table 2). The period of record for the monthly rainfall at each NWS gage is presented in Table 2 along with the number of observations (i.e. "Nobs"). Descriptive statistics and plots for each of the NWS rain gages are provided in Attachment 5. The results of the SKT test suggested a single rain gage (USC000870025, Perry, FL) had a significant declining trend in rainfall between 1940 and 2016 with a very small slope, suggesting an approximate 1 inch decrease in rainfall over 100 years. There were no statiscally significant trends in the remaining NWS rainfall time series (Figure 12).

| Obs | station     | name                                | Nobs | mindate    | maxdate    |
|-----|-------------|-------------------------------------|------|------------|------------|
| 1   | US1GATH0004 | THOMASVILLE 5.1 ESE, GA US          | 96   | 01/01/2009 | 12/01/2016 |
| 2   | USC00085880 | MONTICELLO 10 SW, FL US             | 120  | 01/01/2007 | 12/01/2016 |
| 3   | USC00087025 | PERRY, FL US                        | 924  | 01/01/1940 | 12/01/2016 |
| 4   | USC00087869 | ST MARKS NWR, FL US                 | 180  | 01/01/2002 | 12/01/2016 |
| 5   | USC00091463 | CAIRO, GA US                        | 924  | 01/01/1940 | 12/01/2016 |
| 6   | USC00091500 | CAMILLA 3 SE, GA US                 | 924  | 01/01/1940 | 12/01/2016 |
| 7   | USC00096087 | MOULTRIE 2 ESE, GA US               | 924  | 01/01/1940 | 12/01/2016 |
| 8   | USC00097276 | QUITMAN 2 NW, GA US                 | 852  | 01/01/1940 | 12/01/2010 |
| 9   | USC00098703 | TIFTON, GA US                       | 924  | 01/01/1940 | 12/01/2016 |
| 10  | USW00093805 | TALLAHASSEE REGIONAL AIRPORT, FL US | 900  | 01/01/1942 | 12/01/2016 |

Table 2.Period of record and number of observations for NWS rain gages.



Figure 12. NWS rainfall trend results for gages located near/within the District.

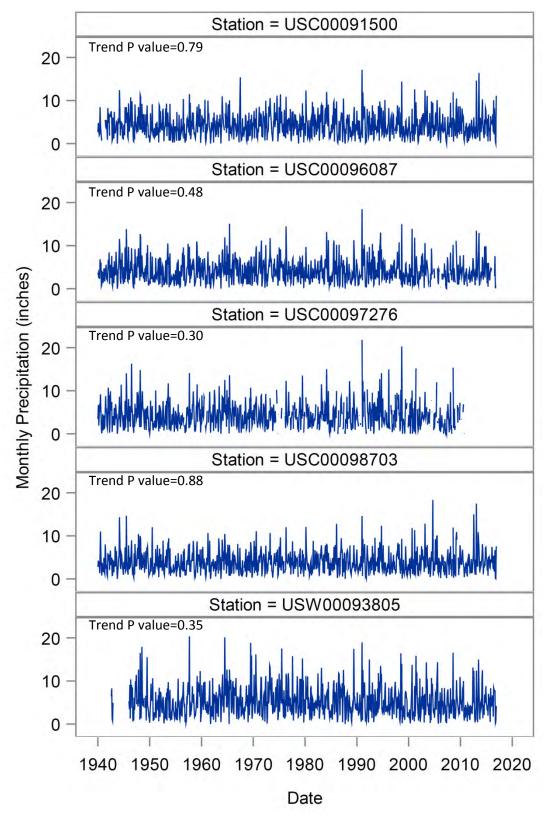



Figure 12 (cont). NWS rainfall trend results for gages located near/within the District.

#### 3.2.4 Groundwater

There were four gages with sufficient period of record for trend testing groundwater elevations. Two gages (3861 and 671) have measurements dating back to the early 1960s while the Pinckney Hill gage and site 7481 have more recent start dates (Table 3; Figure 13). The number of observations (i.e. "Nobs") was quite sporadic among gages. For example, Pinkney Hill had relatively stable monthly measures until 2002 when daily measurements began while other stations had a mix of monthly and seasonal measurements over time. Descriptive statistics (including the sampling frequency by year and month for each site) and plots for the groundwater sites are provided in Attachment 6. Monthly median values were calculated where more than one measure was taken within a month. Results of trend testing indicated no trends at two wells and significantly declining trends in groundwater levels over time for two stations: Pinkney Hill, located in SRWMD northeast of the Rise (Figure 1), (slope of -0.182 feet per year), and Site 671, Newport Recreation Well, located near the St. Marks River and US Hwy 98 (slope of -0.013 feet per year).

| Obs | station        | Nobs | mindate    | maxdate    |
|-----|----------------|------|------------|------------|
| 1   | 3861           | 324  | 01/05/1960 | 05/15/1990 |
| 2   | 671            | 171  | 06/30/1961 | 05/22/2017 |
| 3   | 7498           | 70   | 02/17/2000 | 02/07/2017 |
| 4   | SRPinckneyHill | 2246 | 02/22/1988 | 07/17/2017 |

| Table 5. Feriod of record and number of observations for Groundwater Stations | Table 3. | Period of record and number of observations for Groundwater Stations. |
|-------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------|
|-------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------|

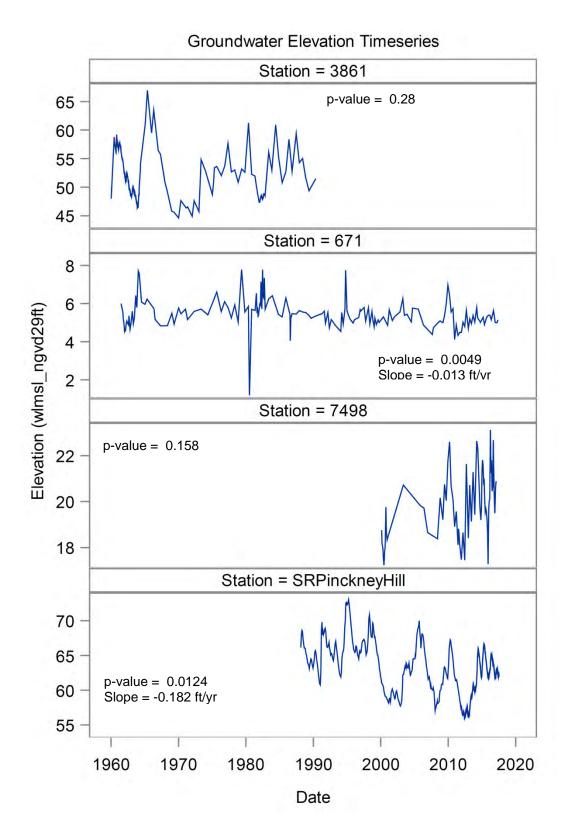



Figure 13. Time series trend test results for groundwater stations.

## 3.2.5 Summary of Trend Tests Results

In summary, the results of the trend tests were as follows:

- Streamflow: St. Marks River near Newport No significant trend.
- Evapotranspiration: Monticello No significant trend.
- Rainfall:
  - Six District gages No significant trends.

- Ten NWS gages - Eight with sufficient period of record for trend testing. Only significant trend was for Perry, FL (USC00087025), with significant declining trend of  $\sim$ 1 inch over 100 years.

• Groundwater Elevations: Four gages with sufficient period of record for trend testing - Significant declining trends at Pinkney Hill in SRWMD northeast of the Rise (-0.182 ft/yr), and at Newport Recreation Well near St. Marks River and US Hwy 98 (-0.013 ft/yr).

# 4 Long-Term Time Series of Spring Discharge at St. Marks River Rise

This section describes the development of a long-term spring flow record for the Rise for use in modeling evaluation of reduced flow scenarios in aid of the development of minimum flows. This is a necessary step in developing the long-term unimpacted spring flow record to be used in minimum flow evaluation. The data considered in the development of the long-term spring flow record include rainfall, groundwater levels, evapotranspiration, and river flow. This section provides a synthesis of methods and results from application of exploratory data analysis and time series regression modeling to generate a long-term time series of spring flow estimates for the Rise as part of an effort to provide technical support to the establishment of a minimum flow for the Rise.

Empirical data include the long-term USGS daily discharge measurements near Newport (USGS 02326900 St. Marks River near Newport, FL) which is located approximately 2,000 feet below the Rise, and a gage near Woodville (USGS 02326885 St. Marks River Swallet near Woodville, FL) that has been in operation since June 2015 and is located just upstream of the swallet, where the flow goes below ground. There are no direct flow measurements at the Rise but no known significant additional surface water inputs between the Rise and the location of USGS station 02326900 exist. The Rise spring discharge is estimated as the flow at the USGS St. Marks River Newport (02326900) less the upstream river flow that discharges into the swallet as measured at the USGS Woodville gage (02326885). There is a limited period of record of USGS Woodville flows, from June 2015 to July 2017 and continuing to present day. The District has requested the development of empirically-derived, statistically-based models to estimate a long term historical time series of flows for Woodville which can then be used to calculate an estimated long term spring flow time series at the Rise.

The overall objective of this effort was to develop the long-term time series of the spring flow discharge at the Rise using statistical modeling. An "unimpacted" spring flow time series is developed as described in the next section of this report, accounting for any estimated quantity of groundwater extraction that has occurred over the time period. Importantly, it is not explicitly necessary, although it may be desirable, to know the source water contributions of the Rise discharge in order to evaluate the potential pumping effect or the un-impacted condition. However, we used exploratory regression modeling to determine if there were additional covariates that could be included to account for variability in the Rise flows that was not explained by the flows measured at Newport and Woodville. In addition to the available discharge data, the District provided daily rainfall, aquifer levels, and daily lake stage data to be used to evaluate potential contributions to the spring discharge. The location of empirical data collection stations in the vicinity of the lower St. Marks River is provided in Figure 14. Efforts to include these potential covariates are described below.

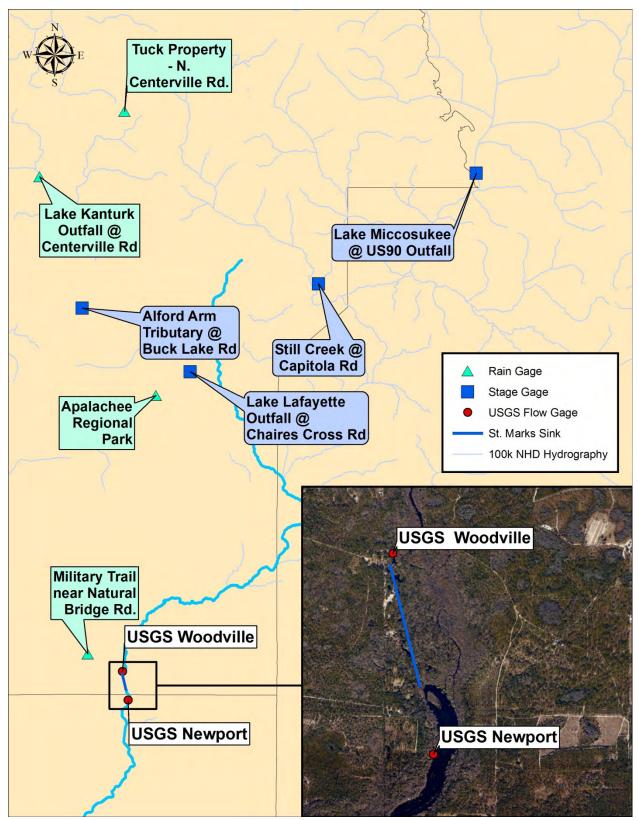



Figure 14. Rainfall and lake stage sampling locations near the St. Marks River gauging stations.

## 4.1 Methods

#### 4.1.1 Data Handling

The relationship between the two USGS discharge measurements over time is displayed in the time series plots of Figure 15. It is clear by examining these plots that: 1) the two independent measures of discharge in the lower river appear to be highly correlated; 2) the magnitude of the Newport flows is substantially larger than those at Woodville; and 3) the Woodville gage included small periods where data were missing which seemed to be associated with times of peak flows.

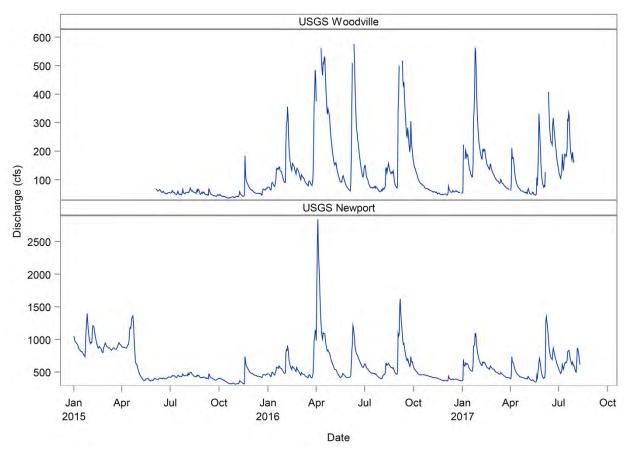



Figure 15. Discharge at USGS Woodville (02326885) and USGS Newport (02326900) over period of coincident measurements. Note y-axis scale difference.

This time series of daily flows at Newport is the only long term flow record in the watershed and is nearly complete except for a data gap beginning in November 1994 and ending in July 1996, and a smaller gap between October 2004 and May 2005. The median flow over the period of record is 611 cfs with flows typically ranging between 475 cfs and 784 cfs. The Woodville time series period of record is June 2015 through July 2017 with 23 missing daily values within that daily time series. The median flow over the period of record was 79 cfs with typical range between 55 cfs and 145 cfs. The missing daily flows were imputed (filled) using nonlinear regression as described in more detail below.

The periods of record for the daily rainfall data is provided in Table 4. The daily records are almost entirely complete within the period of record and any missing values within the record were assumed to be zero. Details of the sampling frequency and distribution of daily rainfall are provided in Attachment 7.

| Obs | Site Name                             | Station             | Date       | Date       |
|-----|---------------------------------------|---------------------|------------|------------|
| 1   | Apalachee Regional Park               | NWFID_11299_prcp_in | 03/30/1987 | 09/12/2017 |
| 2   | Lake Kanturk Outfall @ Centerville Rd | NWFID_11301_prcp_in | 11/09/1989 | 05/02/2017 |
| 3   | Military Tr Near Natual Bridge Rd     | NWFID_11370_prcp_in | 08/03/2004 | 09/12/2017 |
| 4   | Tuck Property, N. Centerville Rd      | NWFID_1293_prcp_in  | 01/28/1987 | 09/12/2017 |

Table 4.Periods of record for District daily rainfall data collected in the Lower St Marks<br/>watershed.

Cumulative sums of rainfall for the four daily rainfall stations were calculated for 7, 14, 30, 60, 90, and 120 days prior to the day of interest for inclusion as potential covariates in regression modeling. In addition, lag average stage heights for the four lake outfalls were calculated for 7, 14, 30, 60, and 90 days prior to the date of interest. The periods of record for these data is provided in Table 5 and descriptive statistics for these data are provided in Attachment 8.

| Table 5. | Periods of record for District Stage data collected in the Lower St Marks watershed. |
|----------|--------------------------------------------------------------------------------------|
|----------|--------------------------------------------------------------------------------------|

| Obs | Site                                 | Date       | Date       |
|-----|--------------------------------------|------------|------------|
| 1   | Alford Arm Tributary at Buck Lake Rd | 01/29/1987 | 09/15/2017 |
| 2   | Lake Lafayette Outfall               | 11/18/1987 | 08/01/2017 |
| 3   | Lake Miccosukee Outfall              | 06/04/2012 | 09/13/2017 |
| 4   | Still Creek at Capitola Rd           | 04/01/2009 | 09/14/2017 |

## 4.1.2 Statistical Methods

The need for long-term daily estimates of the spring discharge at the Rise necessitates a special class of statistical methods to account for the serial correlation that exists in daily flow time series data. Ordinary least squares regression (OLS, standard linear regression) assumes independence between samples. That is, the OLS error correlation matrix is given by:

$$OLS \operatorname{cor}(\varepsilon_{t}, \varepsilon_{t-1}) \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Violation of this assumption can have critical effects on hypothesis testing such as testing for significance of potential covariates in explaining the variation in flows because correlated error structures inflate the false positive rates of the statistical test by underestimating the true standard errors.

Generalized Least Squares (GLS) regression allows for the estimation of the correlation between successive observations taken in time by modeling the error covariance matrix. For example, a model with first order correlated errors (AR1) would be given by:

$$AR1cor(\varepsilon_{t}, \varepsilon_{t-1}) \begin{bmatrix} 1 & \rho & \rho^{2} & \rho^{3} \\ \rho & 1 & \rho & \rho^{2} \\ \rho^{2} & \rho & 1 & \rho \\ \rho^{3} & \rho^{2} & \rho & 1 \end{bmatrix}$$

where  $\rho^{|t_2-t_1|}$  is the correlation between successive observations in time and decomposes with observations taken farther apart in time.

The autoregressive moving average (ARMA) model and the ARIMA (I=integrated) model structure are further generalizations to describe correlations among successive observations in time as well as the moving average component of correlation in the error term. With these models, the variable of interest is actually regressed on its own prior values and therefore dependent on both the independent terms as well as prior values of the dependent variable. Often the response time series needs to be differenced in order to meet the assumption of stationarity (e.g. constant mean and variance) and so the difference between the value and the value one step previous in time is used as the response variable of interest. This is the "Integrated" component of the "ARIMA" model (Box et. al., 1994).

The analyses used in this task explored several statistical modeling strategies to develop a time series of long-term spring flow at the Rise. The process involved creating a long-term time series of average daily flows at the Woodville gage (e.g. flow into swallet) and then subtracting these flows from flows measured at the Newport gage to create a long-term time series of spring discharge. Statistical modeling strategies included: (1) OLS regression; (2) GLS regression; (3) nonparametric and nonlinear locally weighted regression (LOESS); and (4) ARIMA modeling. The techniques were employed using Statistical Analysis Systems (SAS Institute, Inc., 2015) for OLS regression (SAS Proc

GLMSelect), GLS regression (Proc Mixed), and the nonparametric and nonlinear locally weighted regression (Proc LOESS) analysis. We used the open source statistical software R (R Core Development Team, 2015) for GLS (NMLE package) and ARIMA modeling (forecast package). The forecast package, created by Rob Hyndman <a href="http://pkg.robjhyndman.com/forecast/">http://pkg.robjhyndman.com/forecast/</a>, is extremely flexible to accommodate a wide range of time series error structures including both seasonal and serial differencing to remove autocorrelation effects. An important attribute of this work that makes it different from typical time series modeling is the need to "hindcast" or predict backwards in time all covariates. This required reversing the order of the time series for all variables in the model. Reversing the time series is reported to have no effect on the ARIMA model estimation process. For further details see information provided by the creator of the forecast package at <a href="http://robjhyndman.com/hyndsight/backcasting/">http://robjhyndman.com/hyndsight/backcasting/</a>. Residual analysis included the use of the autocorrelation function (ACF), partial autocorrelation function (PACF), and Box Ljung test to test model adequacy with respect to the residuals.

The modeling strategy applied to this exploratory data analysis is summarized in the bullet points below:

- 1) Use LOESS regression to impute (i.e. fill) missing values in existing Woodville time series based on a relationship with flows measured at the Newport gage. This was necessary for later ARIMA modeling efforts. This also provides an additional estimate of a long-term time series of predicted Woodville flows using a simple nonlinear model.
- 2) Model Newport flows as a function of Woodville flows using GLS regression. This is the most internally consistent formulation of the hypothesis we wished to test in that the Woodville gage is upstream of the Newport gage. The GLS model was used in an attempt to account for serial autocorrelation and generate residuals, after accounting for serial correlation, which were then evaluated in the next step to identify potential covariates.
- 3) The residuals of the GLS regression were then used to evaluate the potential for additional empirical data to explain variation in flows that could be attributed to the Rise flows.
- 4) Reformulate the model structure and develop ARIMA models that include the additional covariates identified in step 3 to generate a long-term time series of Woodville flows based on Newport flows and the additional covariates.
- 5) Compare results from the methods applied to determine the most appropriate long-term time series of flows at Woodville to subtract from the Newport flows and generate the long-term Rise spring flow record.

Each of these steps is further detailed in the results section below.

## 4.2 Results

The Woodville time series is critical to the objectives of this task and the first effort of the analysis was to impute (fill) the 23 missing dates within the Woodville time series in order to have a complete time series within the two year period of record of daily flows. Since the length of missing data periods did not exceed 8 days, LOESS regression was used to impute those missing values, using the Newport time series to estimate the Woodville flows on missing Woodville days.

The regression relationship is displayed in Figure 16 where Newport flows are on the X-axis and Woodville flows are on the Y-axis and the solid line represents the LOESS-predicted values. The fit suggests a slower rate of change in Woodville flows when Newport flows are below 500 cfs and an increased rate of change when Newport flows are above 500 cfs. The plot provided in Figure 17 displays the imputed values (red dots) and indicated that the majority of missing values occurred during high flow periods.

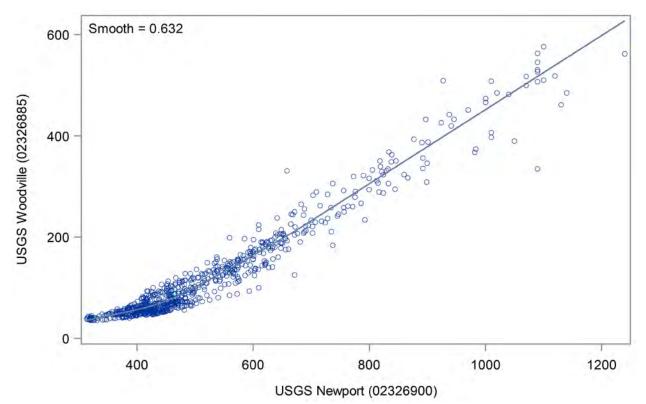



Figure 16. Relationship between the flows at USGS Newport (02326900) and flows at USGS Woodville (02326885) based on daily measurements between June 2015 and July 2017.

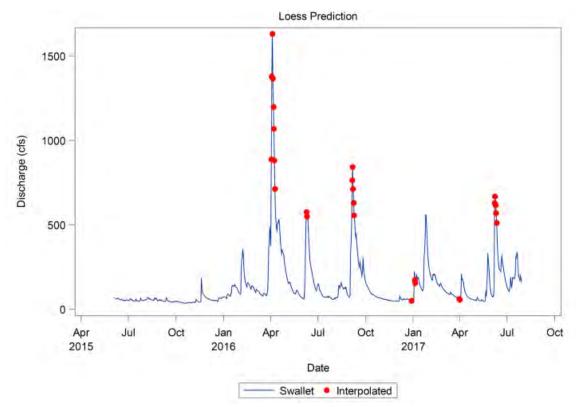



Figure 17. Results of LOESS regression model used for imputing Woodville flows on missing days.

Locally weighted regression (LOESS: Cleveland. 1979) was implemented using the SAS LOESS procedure (SAS Institute, Inc., 2015). The LOESS method is nonparametric and uses weighted least squares to fit linear functions of the predictors at the centers of neighborhoods. The radius of each neighborhood is chosen so that the neighborhood contains a specified percentage of the data points. The fraction of the data, called the *smoothing parameter*, in each local neighborhood are weighted by a smooth decreasing function of their distance from the center of the neighborhood. To relate Newport and Woodville discharge measures, automated selection criteria were used to provide the best fit to the data while maximizing the predictive capacity of the model. This included using the AICC function to select the smoothing parameter, and using iteratively reweighted least squares to perform robust fitting in the presence of outliers in the data as described in the SAS procedure documentation (PROC LOESS: SAS Institute, Inc. 2015).

Initially, as referenced above, LOESS regression was utilized in an effort to fill in missing values in the timeseries of observed Woodville discharge measurements between 2015 and 2017 (breaks in the line plot, Figure 15). The filled timeseries was then used in exploratory data analysis to predict a long term timeseries of Woodville flows that could be used to develop an estimate of the spring flow from the Rise.

The principal explanatory variable used to predict Woodville flows was the flow record downstream at the Newport gage. In addition to this gage, the District requested consideration of

the inclusion of additional covariates including antecedent rainfall, groundwater levels and other potential covariates to explain variation in the Woodville flows after accounting for the relationship between the flows at Woodville and Newport. Autoregressive integrated moving average (ARIMA) timeseries regression analysis was used to evaluate the potential of these covariates to explain additional variation in Woodville flows after accounting for the Newport flows (see further discussion below). ARIMA modeling was selected for hypothesis testing of these additional covariates due to the serial correlation present in the daily timeseries of flows. The results of that effort are detailed below and suggest that, after accounting for the relationship between Newport and Woodville, there is little improvement to the models by including additional covariates. This was due to the high degree of correspondence between these two independent measures of discharge over the same time period. For example, a simple linear regression model predicting Woodville flows using Newport flows resulted in an R<sup>2</sup> value of 0.97. The serial autocorrelation present in the timeseries resulted in the choice for ARIMA modeling to conduct hypothesis testing for potential additional explanatory terms to relate these measurements, but in the end there was little improvement in the inclusion of additional covariates.

The flow duration curves of the observed and predicted Woodville flows (Figure 18) suggest extremely good agreement between the observed and predicted values. The timeseries plot of the observed and predicted values (Figure 19) also reveals a tight correspondence between the observed and predicted values. Finally, the residual diagnostics (Figure 20) suggest that the residuals are approximately normally distributed and fit well across the range of observed values. The long-term time series of LOESS predictions of Woodville flows is provided in Figure 21 along with the observed Newport time series used as the explanatory term in the model.

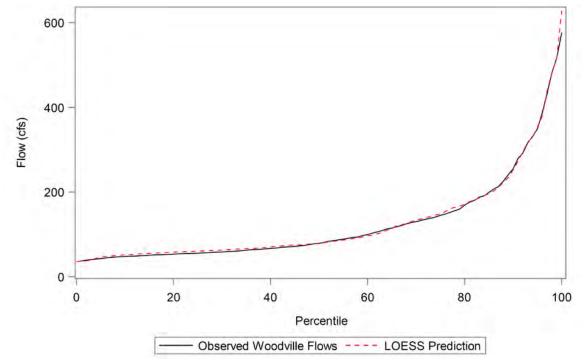



Figure 18. Flow duration curves for observed and predicted flows at USGS Woodville (02326885).

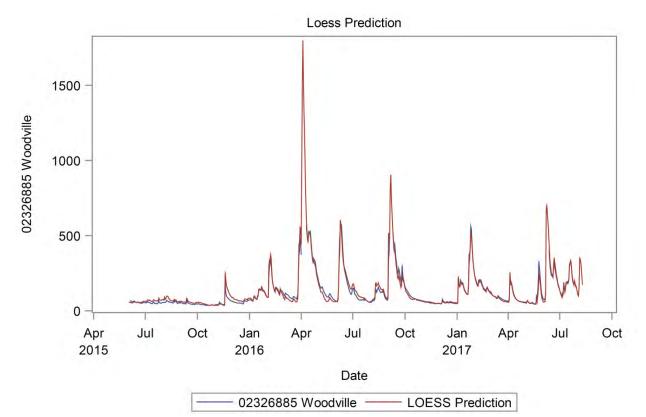



Figure 19. Timeseries of observed and predicted flows at USGS Woodville (02326885) between June 2015 and July 2017.

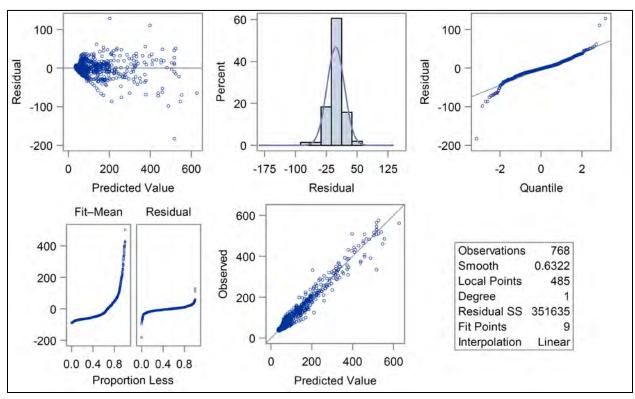



Figure 20. Residual diagnostics of LOESS fit of USGS Newport to USGS Woodville.

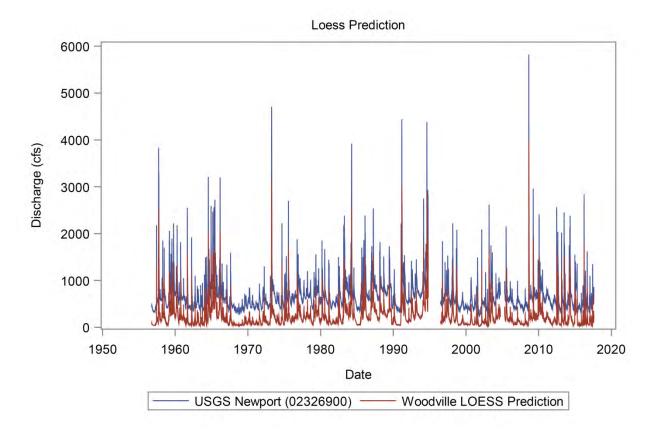



Figure 21. Time series of Woodville predictions based on LOESS model (red line) and time series of observed Newport discharge (blue line) for long term period of record.

Once the data gaps were filled using the LOESS methodology, the next analytical step was to address the question: are there covariates in addition to the Newport flows that contribute to the variation in Woodville flows that can be identified using existing data? The most straightforward statistical approach to identify potential covariates describing the composition of discharge at the Woodville was to formulate a GLS regression model to evaluate discharge at Newport as a function of discharge at Woodville and use the residuals of that regression to evaluate the potential for covariates to explain additional contribution to the flows at Newport, after accounting for the flows at Woodville. In this way the correlation among the residuals could be accounted for in a statistically appropriate manner and the covariates could be evaluated against the residuals using automated variable entry selection procedures for the 48 potential covariates requested for inclusion in the model (i.e. cumulative rainfall for varying aggregation periods and lagged average lake stage). There are no known variable selection routines for time series regression models in either SAS or R, thus variable selection was performed manually. Therefore, the SAS Proc Mixed procedure was first used to develop a ARMA (1,1) model to estimate the relationship between Woodville and Newport flows. The resulting model was highly statistically significant (Figure 22) and estimated that when flows at Woodville were 0, flows at Newport would be 330 cfs and for each 1 cfs increase in Woodville flows, the Newport flows would increase by 1.5372 cfs. The residual diagnostic plots for this regression are provided in Figure 22.

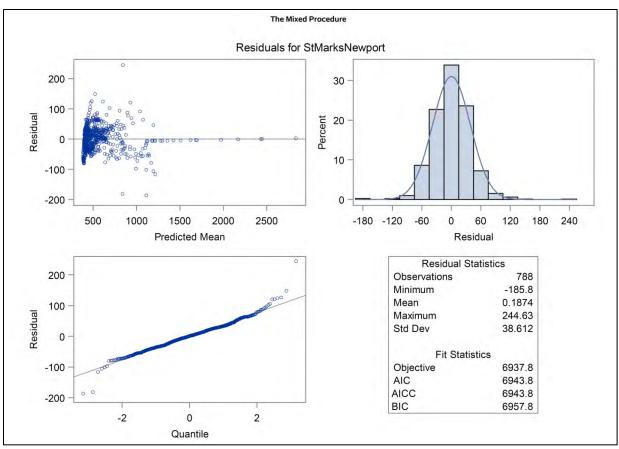
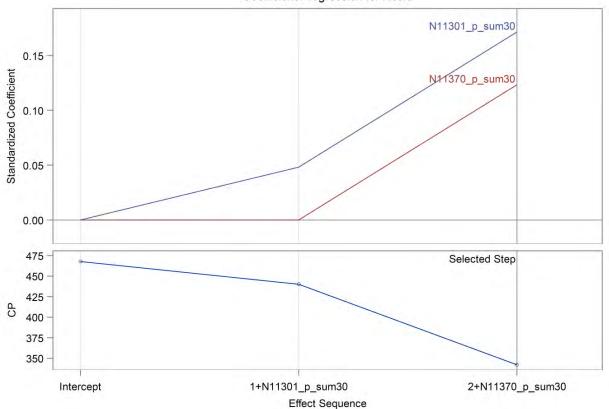




Figure 22. Results of ARMA (1,1) regression analysis to predict Newport flows from Woodville flows between June 2015 and July 2017.

The daily residuals of this regression were then used as the dependent variable to address the question regarding the potential for additional covariates to explain variation in Newport flows after accounting for the Woodville flows. The SAS Proc GLMSelect procedure was used to assess the potential contribution of the antecedent rainfall and stage data including all the lagged average stage and cumulative rainfall sum data. All 48 variables were included as potential effects as a saturated model and the Lasso and Mallows Cp options were used for variable selection. In addition, the data were partitioned such that 60% of the data were selected at random to fit the model, 20% were used for model validation, and 20% were used for testing. This was done 1) to account for any remaining serial correlation in the residuals and 2) to ensure that the variables selected were externally validated as having predictive capacity to the empirical data. The results of this analysis suggested that the 30-day cumulative rainfall at Lake Kanturk Outfall (NWFID 11301) and the 30-day sum rainfall at Military Trail near Natural Bridge (NWFID 11370) were the best predictors of variation in Newport residual flows after accounting for the Woodville flows.

Figure 23 displays the results of variable selection and shows that after the two most significant variables were accounted for, the Mallow's Cp criterion suggested no further improvement in the model by any additional variables. The Coefficient of Determination ( $R^2$ ) of this fit was 0.154 indicting that these data explained only an additional 15% of the variation in residual flows after

accounting for flows at the Woodville station. By comparison, a simple linear regression model of total flows at Newport using flows at Woodville results in an R<sup>2</sup> of 0.97 though the R<sup>2</sup> is inflated due to serial autocorrelation. An example plot of the relationship between the residuals and the cumulative rainfall data for Lake Kanturk is provided in Figure 24 and illustrates the noise in the relationship between the residuals and rainfall for the various cumulative rainfall sums.



Coefficient Progression for Resid

Figure 23. Effect sequence from variable selection procedure indicating the standardized coefficients for significiant effects and the step where the Mallows Cp criterion terminated the routine.

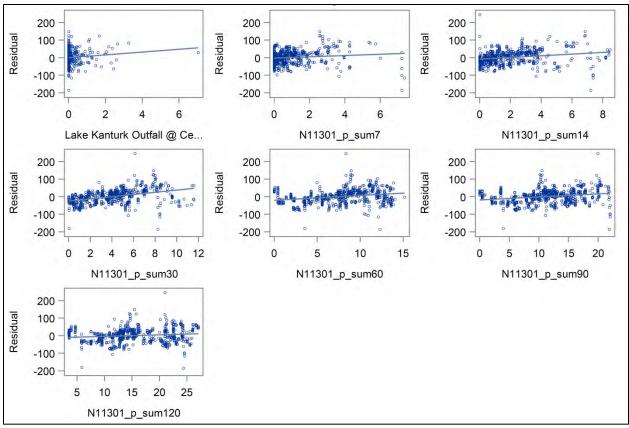



Figure 24. Scatter plot of residual flows at Newport against various cumulative sums of rainfall at Lake Kanturk outfall.

Once the principal covariates were identified, the R forecast package was used to model the time series and generate long-term hindcasts of the Woodville flows. The first step was to identify the most appropriate time series regression structure. For example, while the ARMA (1,1) model was used to evaluate the potential covariates of Newport flow residuals after accounting for the effect of Woodville flows, there was evidence that the residuals remained correlated through examination of the autocorrelation plots (Figure 25) where the needle lines extend beyond the blue broken lines of statistical significance in both the ACF plots used for the AR component and the P (partial) ACF plot used for the MA component. SAS Proc Mixed does not allow for more complex ARMA structure. As a result, we performed the next step of the regression modeling using the R forecast package.

While the previous effort was used to evaluate the principal covariates effecting flows at Newport, the ultimate goal of this effort was the need to develop a long-term time series of flows at Woodville that could be subsequently used to generate a long-term time series prediction for the Rise flows. Therefore, the independent and dependent terms in the previous model were switched. That is, Woodville flows were predicted as a function of Newport flows and other independent terms identified in the previous step. This would allow for a long-term prediction time series for Woodville and incorporate additional covariates identified from the variable selection procedure above to evaluate their benefit to the model. The ACF, PACF plots and Box Ljung test were used to test for model adequacy with respect to the correlation of the residuals and AICC was used to assess

improvement of the model through the inclusion of the covariates. Once the optimal model structure was identified, the values for the independent terms in the model could be used to predict a long term time series prediction for Woodville flows

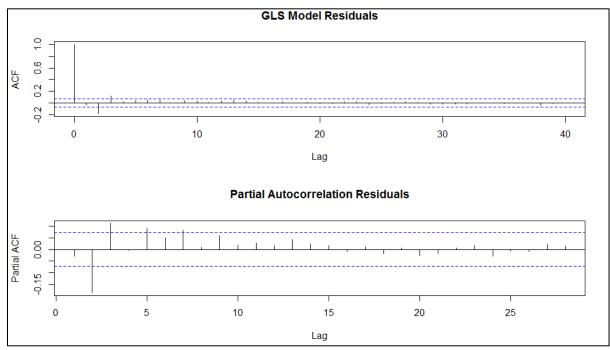



Figure 25. Autocorrelation and partial autocorrelation plots of ARMA 1,1 model on the regression predicting Newport flows using Woodville flows.

Several forms of ARMA and ARIMA models of Woodville daily flows were derived as candidate models. The best model as chosen by the smallest AICC criterion was a differenced ARMA1,3 model, equivalent to an ARIMA (1,1,3) model with AICC value of 5721.97 (Figure 26). The ACF and PACF plots indicate non-significant correlation at all lags and the results of the Box Ljung test resulted in a non-significant p value of 0.66 indicating that the model effectively accounted for serial correlation in the timeseries.

Including the 30-day summed rainfall at Lake Kanturk improved the AICC slightly to 5712.55 and adding additional covariates after that did not improve the model fit according to the AICC criterion. Therefore a final ARIMA model predicted the Woodville flows using Newport flows and the 30 day sum rainfall at Lake Kanturk. Because the Lake Kanturk time series only goes back to November 1989, the time series of predicted Woodville flows using this model is restricted to this time period. To provide an option for a longer prediction time series, the model with only Newport flows was also output for comparison which allows for hindcast predictions back to 1956. These two models are referred to as "covariate" and "univariate" ARIMA models, respectively.

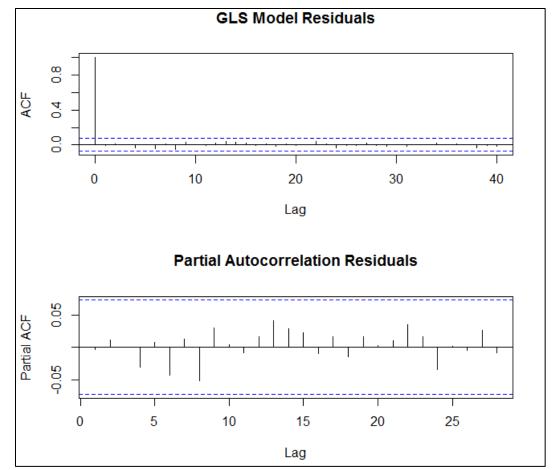



Figure 26. Autocorrelation and partial autocorrelation plots of a differenced (ARIMA 1,1,3) model on the regression predicting Newport flows using Woodville flows

In addition, it was observed that the ARIMA models could result in negative discharge predictions in a small number of predictions which is implausible. While typically these predictions might be set to zero (or the minimum observed value), the LOESS regression model provided nearly identical fit to the ARIMA model predictions and provided a better fit to the data when Woodville flows were near their minimum values.

### 4.2.1 Summary

Calibration statistics for the period of record of Woodville flows suggest that either the ARIMA model without additional covariates or the model with the Lake Kanturk 30-day summed rainfall covariate had nearly identical calibration statistics (Table 6) with respect to the intercept and slope of the predicted versus actual Woodville data. The GLS model performed the worst. The simple LOESS model used for interpolation also performed well but results in slight over-prediction bias as evidenced by the larger intercept and calibration statistics. The LOESS model, however, did not predict negative values whereas the other two models did in rare cases. It should be noted that Woodville flows were never zero during the available period of record.

| Model      | Nobs | Intercept | Slope | _RMSE_ | _RSQ_ |
|------------|------|-----------|-------|--------|-------|
| Arima_Pred | 797  | 1.157     | 0.992 | 12.031 | 0.994 |
| Covar_Pred | 726  | 1.679     | 0.989 | 12.029 | 0.994 |
| GLS_pred   | 797  | 8.640     | 0.939 | 23.562 | 0.976 |
| LOESS_pred | 797  | 2.558     | 0.983 | 20.351 | 0.983 |

Table 6.Calibration statistics for the three models developed for predicting a long term time series<br/>of flows at the Rise.

A comparison of three of the candidate models (i.e. LOESS, Univariate, Covariate) is provided in the time series plot of Figure 27. All three models had similar prediction trends which makes it difficult to distinguish the different predictions in the figure below. Therefore, the difference between the three best models is plotted for a hypothetical six-year time series in Figure 28. This period could serve as a reference period for development of the estuarine hydrodynamic models described in later sections (1996-2002).

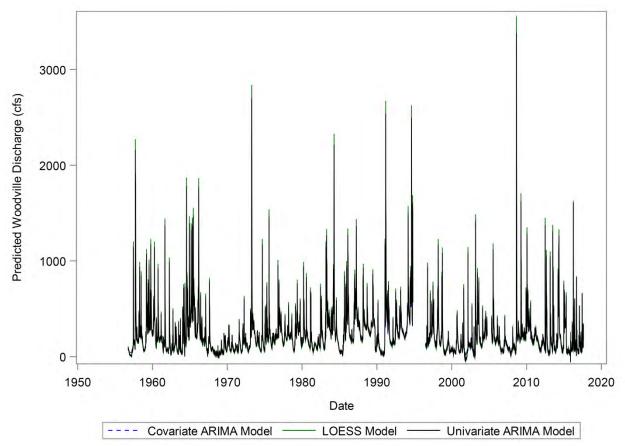



Figure 27. Time series of predictions for three candidate models to predict a long term time series of Woodville flows.

The plot provided in Figure 28 suggests that the two ARIMA models have very similar predictions over the time series with differences typically less than 20 cfs. LOESS model predictions were more variable and tended to predict higher peak flows at Woodville relative to either the univariate or

covariate model when flows at Newport were higher over the period of record (the black solid line in the upper third of the figure is the square root of the Newport flows for reference to an observed time series). The covariate model appeared to predict lower flows than either the univariate ARIMA model or the LOESS model during times of peak flows.

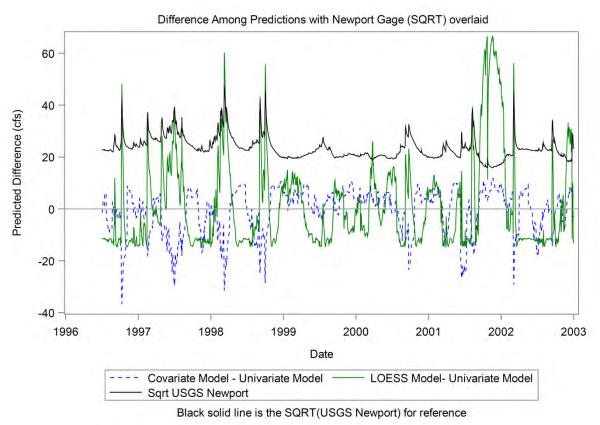



Figure 28. Time series of differences between the LOESS and Covariate models and the univariate ARIMA model for the 1996-2002 time period.

In summary, several regression models have been developed to predict Woodville flows from Newport flows in an effort to derive a long-term time series of spring flows from the Rise. These models are summarized below:

**LOESS** – A simple LOESS model to predict Woodville as a function of Newport flows. The model fits well and is capable of predicting a time series back to 1956 with only the Newport flows as independent variable. Advantages of the LOESS model are that it is nonlinear and does not predict zero or negative flows at Woodville. The disadvantage of the LOESS model is that it is not a time series model and therefore does not account for the serial memory in the flow time series inherent in the data. The model predictions may therefore be less precise in some instances than the ARIMA model predictions though they are more precise at extreme low flows when the ARIMA models predict zero or negative values.

**Univariate ARIMA** – A univariate ARIMA model (univariate meaning one independent variable – i.e. USGS Newport). This model had the highest agreement with the empirical Woodville data as estimated by the intercept and slope of the calibration comparison for data when both Woodville and Newport data were available. Advantages of the model are that it allows for predictions back to 1956 which would be advantageous if, for example, pumping data were available that suggested little pumping effect until the 1970s. A potential disadvantage of this model would be that it can result in zero or negative predictions for Woodville flows which occurred in slightly more than 1% of the daily values. These values could be set to zero or to a minimum observed value if the timeseries were to be used for future evaluations.

**ARIMA with Covariate** – A multiple parameter ARIMA regression model including both flows at Newport and the 30 day cumulative sum rainfall at Lake Kanturk. This model had very similar calibration statistics to the univariate model and included a covariate describing empirical antecedent rainfall data. The AICC criterion suggests a very modest increase in predictive capacity over the time period when all three data records were available relative to the univariate model. Advantages of this model are that it includes additional information collected along with the two flow records. The disadvantage of this model is it restricts the hindcasting time period to 1989, the available period of record for the rainfall dataset.

**GLMSelect** - At the request of the District, an additional model was developed to model the difference between observed Woodville and Newport flows as a function of the Newport flows and the rainfall and stage data described above. The resulting GLMSelect model indicated that the 30-day and 60-day sum rainfall at Lake Kanturk, and the 30-day sum rainfall at Military Trail, were significant predictors in addition to the Newport flows. with an R<sup>2</sup> value of 0.91. After accounting for serial autocorrelation using an ARMA(1,1) model, only the Newport flows remained significant, indicating that additional covariates did not improve the model once serial correlation was accounted for. Therefore, this model provides no improvement over the other models developed for this project which adhere more strictly to statistical assumptions of the regression modeling framework.

Outcomes of this modeling effort have resulted in the conclusion that if a long term time series (i.e. back to 1956) of Woodville flows is necessary, then either the univariate ARIMA model or LOESS model could be used to develop the St. Marks River Rise spring flow time series by subtracting the Woodville predictions from the Newport time series. If a shorter period of record is sufficient, than either the univariate or covariate ARIMA model predictions will serve equally to estimate the St. Marks River Rise spring flow time series in the absence of other information. Negative predictions could be set to zero or the minimum observed value for Woodville for future assessments. The differences among these models are small and likely within the uncertainty of any of the individual models.

In consultation with District staff, it was decided that the LOESS model provided the best tool for use in developing the long term un-impacted Rise flow time series. The LOESS model fit the

observed data well and is fully capable of predicting a daily time series of Woodville flows back to 1956 using only the Newport flows as independent variable. The prediction timeseries was very similar to the ARIMA modeling effort described above but did not yield negative predictions like the ARIMA models. The only disadvantage of the LOESS model relative to the ARIMA models is that it is not a time series model and therefore does not account for serial memory in the flow time series inherent in the data; however, this artifact is primarily important for hypothesis testing (i.e. detecting the statistical significance of covariates in the model). Since this model is univariate, with only Newport flows as the explanatory variable, the benefits of ARIMA modeling are much less consequential in this regard.

## 5 Baseline Flow Record for St. Marks River Rise Unimpacted Condition

This section describes the development of an unimpacted spring flow record for use in modeling evaluation of reduced flow scenarios in aid of minimum flows development. Section 4 above described the development of a synthetic long-term flow time series of spring discharge at the St. Marks River Rise (Rise). Minimum flows and minimum water level (MFL) determinations require that the system in question be evaluated under conditions representing a baseline (unimpacted) condition which is then used for comparison to conditions under various flow reduction scenarios to arrive at a technically defensible, scientifically supportable minimum flows. This section describes the use of the long-term flow record developed for the Rise described in Section 4 as the starting point to developing a baseline flow record that is unimpacted by consumptive use (e.g. groundwater and surface water withdrawals). This section provides a synthesis of methods and results to generate a long-term time series of baseline spring flow estimates for the Rise as part of the effort to provide technical support to the establishment of minimum flows for spring discharge at the Rise.

The baseline time series will serve as a reference condition in which the impact from groundwater withdrawals is negligible. Review of the conceptual groundwater model conducted by Interflow Engineering (2015) indicates that the primary anthropogenic stressors on the Rise are pumping and irrigation. The effects of these two activities will be manifested primarily as the net effect of the consumptive use in the Rise spring discharge. Per Table 4.7.1 of Interflow Engineering (2015), pumping and irrigation comprised approximately 4.9% and 3.3%, respectively, of the St. Marks River long term baseflow. These components are a relatively small portion of the water budget for the Rise groundwater contribution area.

The evaluation described in Section 4 above resulted in the conclusion that the LOESS regression model should be used to develop the daily timeseries of Rise spring discharge by subtracting the estimated daily Woodville flows from the Newport time series. The results of subtracting the Woodville flows as predicted by the LOESS regression model from USGS Newport station flows is shown in Figure 29. This time series represents the best estimate of daily spring discharge from the Rise. Figure 30 presents the cumulative residuals for spring flow for the periods Water Year (WY) 1957-2016. In this case, residuals are defined as each value's departure from the long-term average annual spring discharge at the Rise (451.8 cfs).

Temporal patterns in the Rise flow record were evaluated through box-and-whisker plots and a series of flow duration curves. Box-and-whisker plots were made for the WY periods 1957-2016, 1957-1986, 1987-2016, 1957-1965, 1966-1975, 1976-1985, 1986-1994, 1997-2004, and 2006-2017. The period of record (ignoring gaps) encompassed approximately 60 years. It was divided into two equal 30-yr periods and 6 equal periods of approximately 10 years each. Figure 31 presents these box-and-whisker plots. As compared to the box-and-whisker diagram for the full period of record, WY 1957-1965 and WY 1986-1994 reflect periods of higher than average flows.

The figure indicates that WY1976-1985 reflects an average period while the remaining periods reflect times of generally lower than average spring flows.

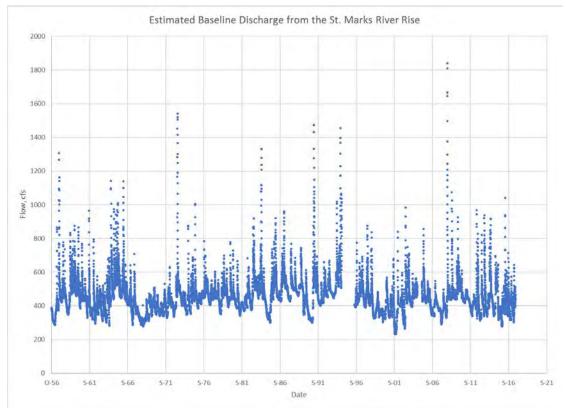



Figure 29. Time series of Rise spring flows.

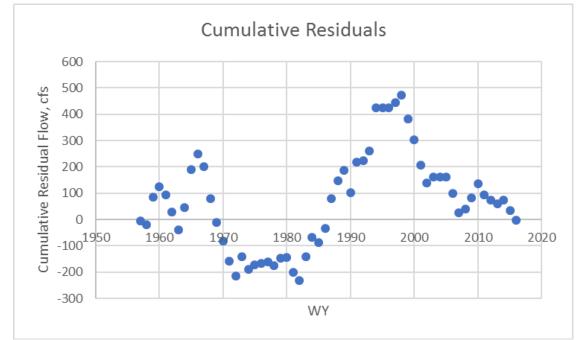
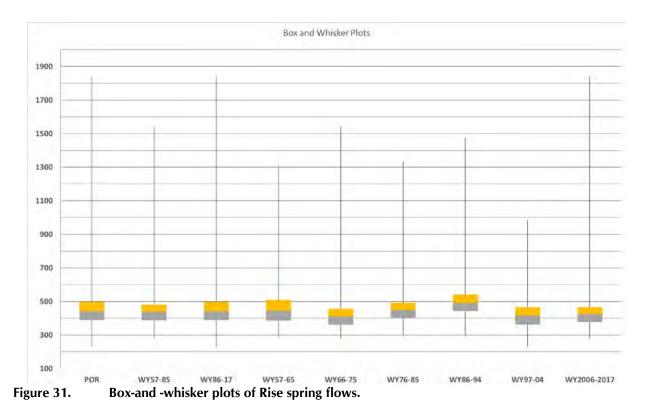




Figure 30. Cumulative residuals of average annual spring flows at the Rise.



To understand the dynamic nature of climate pattern and its effect on hydrology, it is useful to characterize current conditions in the context of long-term historical conditions. Figures 32-34 present flow duration curves of estimated spring flows at the Rise for the same time periods as for the box-and-whisker plots. Figure 32 presents the flow duration curves for the 1957-2016, 1957-1986, and 1987-2016 periods. Inspection of the plot reveals that the differences between the three curves appear to be negligible. Table 7 presents a comparison of flow percentiles for the three periods. Figure 33 presents flow duration curves for WY periods 1957-2016, 1957-1965, 1966-1975, and 1976-1985. Figure 34 presents flow duration curves the WY periods 1957-2016, 1986-1994, 1997-2004, and 2006-2017. Larger differences between the long term pattern and the flow duration curves for the various decades are apparent and are not unexpected.

| Comparis | Comparison of flows (cfs) at specified percentiles for three record periods. |                 |            |  |  |
|----------|------------------------------------------------------------------------------|-----------------|------------|--|--|
|          | Period-of-Record                                                             | <u>WY 57-85</u> | WY 86-2017 |  |  |
| Max      | 1841                                                                         | 1541            | 1841       |  |  |
| 95       | 629                                                                          | 621             | 637        |  |  |
| 90       | 562                                                                          | 551             | 570        |  |  |
| 75       | 490                                                                          | 482             | 498        |  |  |
| 50       | 440                                                                          | 438             | 441        |  |  |
| 25       | 388                                                                          | 387             | 389        |  |  |
| 10       | 345                                                                          | 346             | 345        |  |  |
| 5        | 325                                                                          | 323             | 328        |  |  |
| Min      | 230                                                                          | 279             | 230        |  |  |

| Table 7. | Comparison of flows (cfs) at specified percentiles for three record periods. |
|----------|------------------------------------------------------------------------------|
|          |                                                                              |

Trends and relationships between observed hydrologic and meteorological variables are important in minimum flow determinations to assist with identifying a baseline flow record and for distinguishing between anthropogenic and climatic influences on flow. A baseline flow record is one that reflects unimpacted or minimally-impacted historical conditions over representative longterm hydrometeorological cycles. It was concluded in Section 4 that the rainfall record at the Lake Kanturk Outfall at Centerville Road provided the best correlation of rainfall with flows at St. Marks River. The Lake Kanturk time series period of record is November 1989 to present.

Figure 35 presents the annual rainfall as recorded at the Lake Kanturk gage, which displays no trends in annual rainfall during 1990-2016. This is consistent with the findings in presented in Section 3 above. Figure 36 presents the cumulative residuals of the Lake Kanturk Outfall rainfall. Residuals are defined as each annual value's departure from the long-term average annual rainfall. Cumulative residuals can provide greater resolution and make any trends in the data more apparent. A rainfall surplus occurred for the period 1990-1998. The remainder of the record (1999-2016) reflected a below-average to average rainfall period. A similar trend in spring flow is evident at the Rise (Figures 37, 38, and 39).

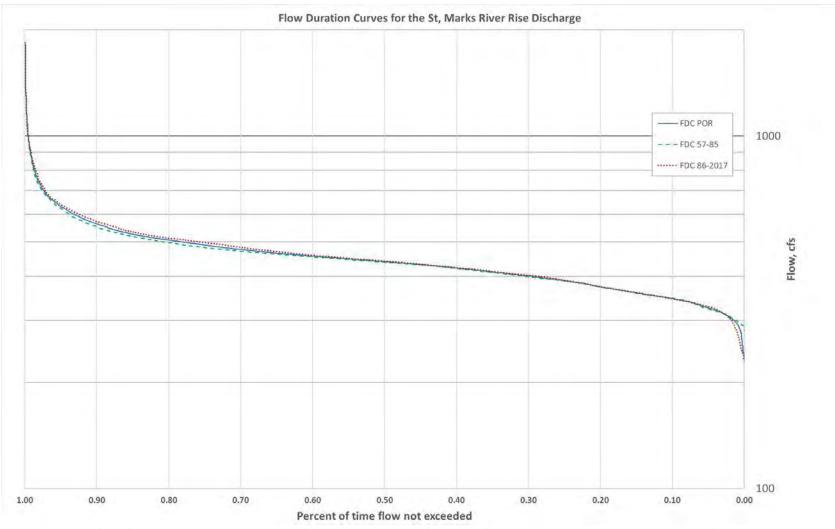



Figure 32. Flow duration curves of Rise spring flows for entire period of record (POR, WY1957-2017), 1957-1986, and 1987-2017.

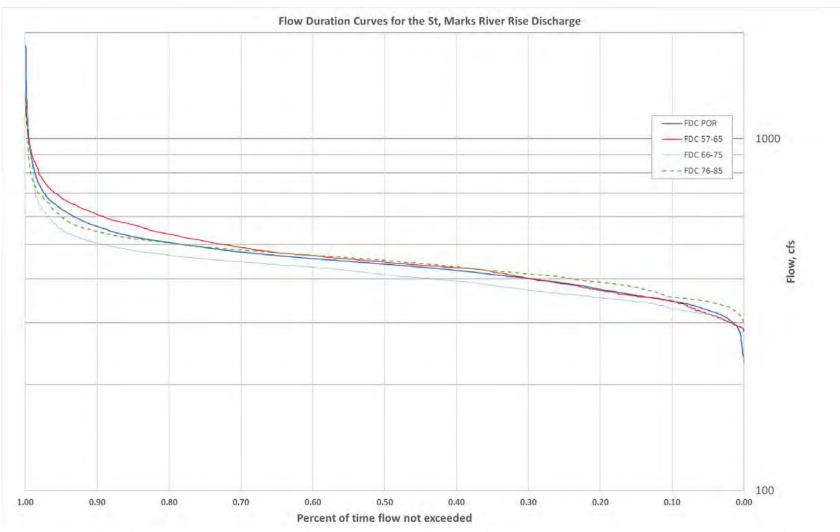



Figure 33. Flow duration curves of Rise spring flows for entire period of record (POR, WY1957-2017), 1957-1965, 1966-1975, and 1976-1985.

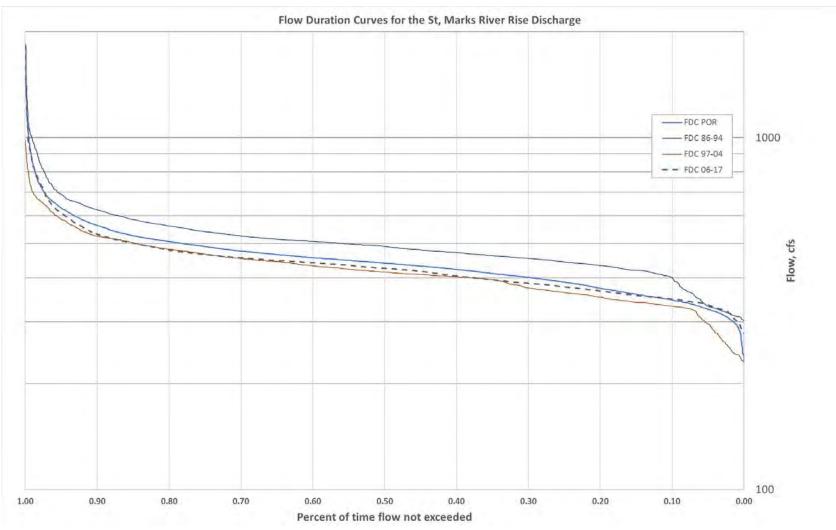



Figure 34. Flow duration curves of Rise spring flows for entire period of record (POR, WY1957-2017), 1986-1994, 1997-2004, and 2006-2017.

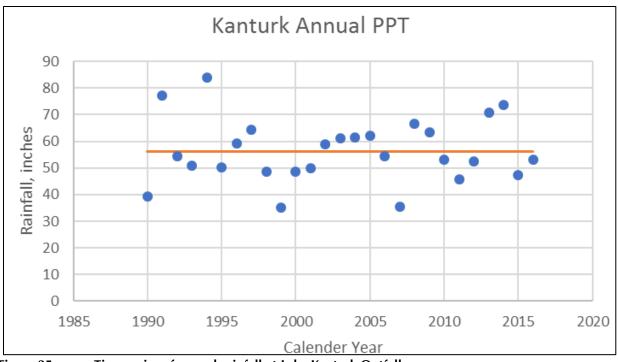



Figure 35. Time series of annual rainfall at Lake Kanturk Outfall.

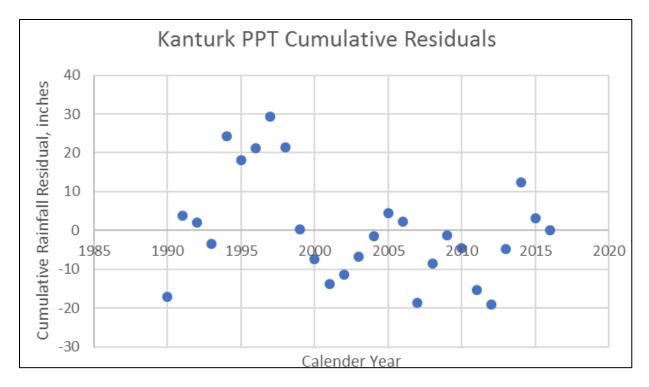



Figure 36. Cumulative Residuals as compared to the period-of-record average of Lake Kanturk Outfall. Residuals are defined as each annual value's departure from the long-term average annual rainfall.

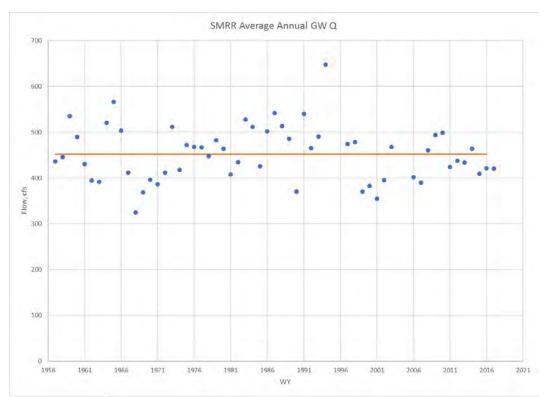



Figure 37. Residuals as compared to the period-of-record average of the Rise flows (451.8 cfs.) Residuals are defined as each annual value's departure from the long-term average annual spring flow.

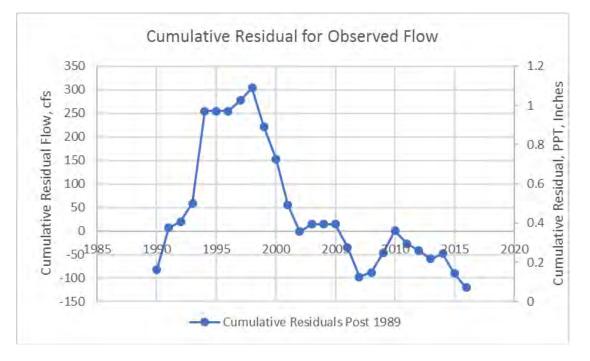



Figure 38. Cumulative residuals (WY 1990-2016) as compared to the period-of-record average of the flows (451.8 cfs). Residuals are defined as each annual value's departure from the long-term average annual spring flow.

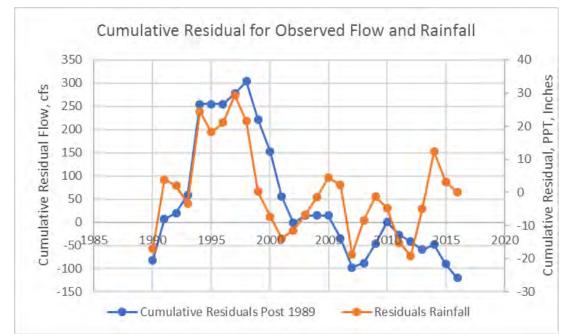



Figure 39. Cumulative residuals (WY 1990-2016) as compared to the period-of-record average of the Rise spring flows.

Double mass curves can be used to check the consistency of hydrologic records. The double mass curve can be used to study trends or possible changes in precipitation-runoff relationships (Searcy and Hardison, 1960). Using double mass curves, further analysis was performed to determine if a change in spring flow can be discerned that is not explained by precipitation or other climatological variables. The period of record for the Rise and the Lake Kanturk Outfall rainfall were analyzed to determine if the precipitation-runoff relationship may have changed over time and, if so, to try to quantify the magnitude of the changes over the period of interest. A precipitation-runoff relationship was developed and then compared to observed, or measured, runoff to see if changes in the precipitation-runoff relationship has changed.

A linear association between the annual flow and rainfall is given by:

 $Q = b0 + b1^*Ri + b2^*Ri-1$  in which Q is the estimated annual average flow at the Rise, in cfs; Ri = rainfall in the current (i) WY, in inches; Ri-1 = rainfall in the preceding (i-1) WY; b0, b1, and b2 are fitting parameters.

Using the Regression module in Excel and period of record data (i.e., 1990–2016), associations between Lake Kanturk precipitation and spring flow at the Rise were developed. Initial efforts indicated that the previous year's precipitation did not significantly improve the regression result. A regression using the current year's precipitation provided good agreement between predicted and measured flows (i.e.,  $R^2$  value of 0.655). Table 8 presents the results of the regression.

| SUMMARY OUTPUT       |              |                |             |             |                |             |             |             |
|----------------------|--------------|----------------|-------------|-------------|----------------|-------------|-------------|-------------|
|                      |              |                |             |             |                |             |             |             |
| Regression S         | Statistics   |                |             |             |                |             |             |             |
| Multiple R           | 0.809441564  |                |             |             |                |             |             |             |
| R Square             | 0.655195645  |                |             |             |                |             |             |             |
| Adjusted R Square    | 0.62071521   |                |             |             |                |             |             |             |
| Standard Error       | 50.19812721  |                |             |             |                |             |             |             |
| Observations         | 12           |                |             |             |                |             |             |             |
| ANOVA                |              |                |             |             |                |             |             |             |
|                      | df           | SS             | MS          | F           | Significance F |             |             |             |
| Regression           | 1            | 47882.11108    | 47882.11108 | 19.0019539  | 0.001423103    |             |             |             |
| Residual             | 10           | 25198.51975    | 2519.851975 |             |                |             |             |             |
| Total                | 11           | 73080.63083    |             |             |                |             |             |             |
|                      |              |                |             |             |                |             |             |             |
|                      | Coefficients | Standard Error | t Stat      | P-value     | Lower 95%      | Upper 95%   | Lower 95.0% | Upper 95.0% |
| Intercept            | 176.5138031  | 65.97244643    | 2.675568554 | 0.023269057 | 29.51803202    | 323.5095741 | 29.51803202 | 323.5095741 |
| Kanturk PPT (Annual) | 4.94137284   | 1.133570391    | 4.359123066 | 0.001423103 | 2.41562061     | 7.467125071 | 2.41562061  | 7.467125071 |

Table 8.Summary output of the regression between annual flow and rainfall.

Figure 40 presents a comparison of the "observed" annual spring flow at the Rise and the annual spring flows as predicted by the above regression.

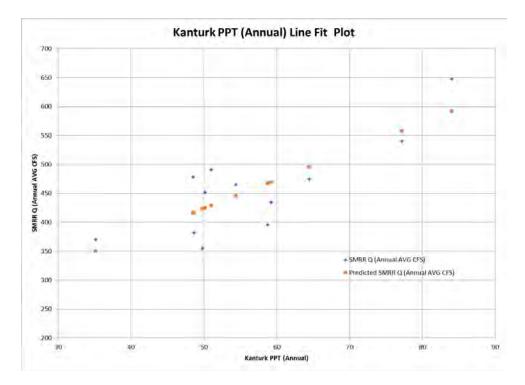



Figure 40. Comparison of the "observed" annual spring flow at the Rise and the annual spring flow as predicted by the regression summarized in Table 8.

The double mass curve of the Rise spring flow as estimated by the statistical model developed in Section 4 and the flow computed by the above regression is presented in Figure 41. There is no primary point of inflection in the double mass curve of the cumulative predicted flow versus cumulative measured flow after which the curve continues to depart from the 1:1 reference line (Figure 41). At 2014, it does appear that the curve may be beginning to diverge from the 1:1 line at that point, with observed flows appearing slightly higher than computed flows.

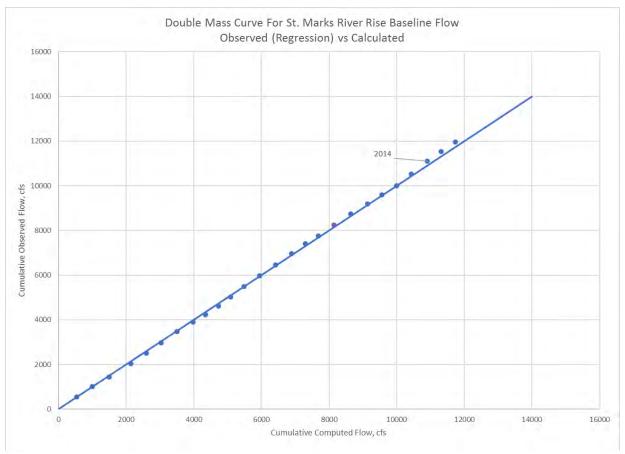



Figure 41. Double mass curve (WY 1991-2016) of the Rise annual spring flows and computed flows using regression.

Variations in the double mass relationship are magnified by plotting the cumulative residuals (i.e., Rise Annual Flows [Section 4 LOESS regression model] minus computed spring flows) versus time (Figure 42). This relationship more clearly shows the consistent prediction of annual runoff up to WY 2014. Figure 43 presents the cumulative residuals for the computed flows using the regression of annual spring flows at the Rise and Lake Kanturk Outfall rainfall. The figure shows a consistent prediction of annual flow and annual rainfall up to around 2014 at which point the annual runoff prediction begins to deviate. It is possible that this deviation is due to some anthropogenic influence. However, it is noted that following 2014, the expected rainfall-flow relationship appears to return, which indicates the deviation is a short-term event. The interpretation of this apparent divergence, if it continues, will become more apparent as the flow record gets longer and subject to less error.

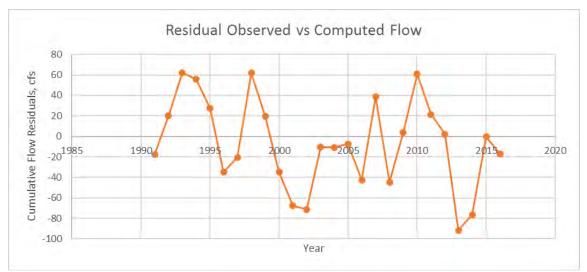



Figure 42. Cumulative residuals (WY 1991-2016) of the Rise annual spring flows (Section 4 statistical model) and computed flows using regression.

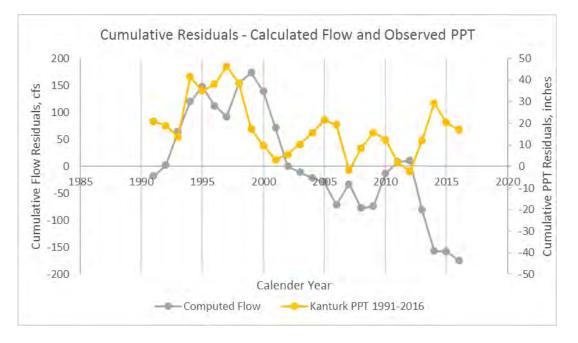



Figure 43. Cumulative residuals (WY 1991-2016) of the Rise computed annual spring flows using regression and the Lake Kanturk Rainfall.

Table 9 presents a comparison of the estimated pumping in the Rise groundwater contributing area (Interflow Engineering, 2015) and the annual average flow as estimated at the Rise. Pumping was estimated to total approximately 0.6 inches over the groundwater contribution area or 11.2 mgd on average for the period 2008–2013. In comparison, rainfall comprised 54.7 inches, evapotranspiration comprised 37.6 inches and St. Marks River flow comprised 13.7 inches. In general, the effect of the pumping will be greatly attenuated as you move from the outer edges of the groundwater contributing area toward the Rise. The relationship between groundwater pumpage and spring flow reductions is not a one-to-one relationship as demonstrated in other MFL

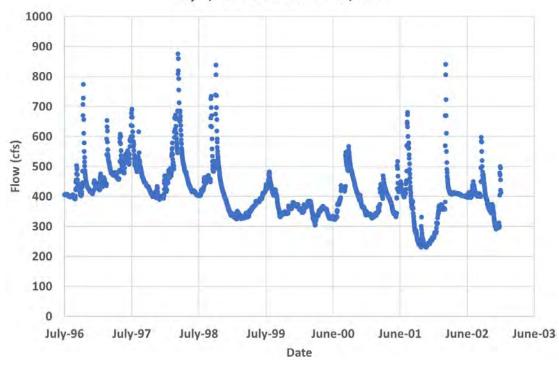
studies. Pumping is a very small portion of the Rise spring flow. As demonstrated by the trend and double mass curve analyses, pumpage effects are not discernable in the spring discharge time series.

| Year | St. Marks River Rise<br>Groundwater<br>Contributing Area -<br>Fl (mgd) | St. Marks River Rise<br>Groundwater<br>Contributing Area -<br>Ga (mgd) | Total<br>E s timated<br>P umpage<br>(mgd) | Total<br>E s timated<br>P umpage (cfs) | Annual<br>Average Flow<br>at the Rise<br>(cfs) |
|------|------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|------------------------------------------------|
| 2008 | 0.65                                                                   | 11                                                                     | 11.65                                     | 18.02                                  | 476                                            |
| 2009 | 0.86                                                                   | 11.1                                                                   | 11.96                                     | 18.50                                  | 504                                            |
| 2010 | 1.13                                                                   | 11.2                                                                   | 12.33                                     | 19.07                                  | 513                                            |
| 2011 | 1.32                                                                   | 11.3                                                                   | 12.62                                     | 19.52                                  | 419                                            |
| 2012 | 1.16                                                                   | 11.4                                                                   | 12.56                                     | 19.43                                  | 444                                            |
| 2013 | 1.13                                                                   | 11.5                                                                   | 12.63                                     | 19.54                                  | 445                                            |
| Avg. | 1.04                                                                   | 11.2                                                                   | 12.24                                     | 18.94                                  | 467                                            |

| Table 9. | Comparison of the estimated pumping in the St. Marks River Rise groundwater |
|----------|-----------------------------------------------------------------------------|
|          | contributing area (Interflow Engineering, 2015).                            |

Based on available water use data and the analysis performed here, there is no evidence of persistent groundwater withdrawal impacts on the spring discharge at the Rise (WY 1990-2016). Therefore, the baseline time series for the Rise spring flows, as presented in Figure 29, represents a minimally-impacted flow time series. The time series was developed by subtracting the Woodville daily flows as estimated by the LOESS regression model (described in Section 4) from the Newport time series of daily flows.

## 6 Flow Record Subset Selection


This section describes the selection of a subset of the unimpacted spring flow record for use in modeling evaluation of reduced flow scenarios in aid of minimum flow development for the St. Marks River Rise. Section 4 provided a synthetic long-term flow time series of spring discharge at the Rise. The results of a rigorous statistical analysis of available flow data and identified relationships defined during that work were detailed in Section 4. Minimum flow determinations require that the system in question be evaluated under conditions representing a baseline (unimpacted or minimally-impacted) condition which is then used for comparison to conditions under various flow reduction scenarios to arrive at a technically defensible, scientifically supportable minimum flow. Section 5 describes how the long-term flow record developed for the Rise was used as the starting point to develop a baseline flow record that is unimpacted by consumptive use (e.g. groundwater and surface water withdrawals). As described in Section 5, results indicated that groundwater withdrawals have not measurably affected the spring flow at the Rise and that the full time period of the Rise can be utilized as the baseline flow record. This Section provides a synthesis of methods and results of the flow duration analysis to select a time period recommended for use in subsequent modeling scenarios to establish minimum flows for spring discharge at the Rise.

To evaluate the effects of reductions in the Rise spring discharge on stage and salinity regimes in the lower St. Marks River, it is important to select a period for model application that includes, to the greatest extent possible, a distribution of flows similar to that over the long-term record. This is necessary as utilizing the full period of record (1957-2017) is not computationally feasible within the model applications being utilized for minimum flow evaluations. The goal of this exercise was to select a roughly two-year representative period for model evaluations. This allows the impacts of spring flow reductions to be evaluated over the entire range of flows experienced in the river utilizing only a relatively small portion of the available flow record.

Constraining the selection of a baseline period for use in model evaluations are the length of the period to be evaluated (a function of model run time) and the availability of boundary condition data during the selected period. Evaluation of the historic flow record against various shorter periods was done by comparing flow duration curves for the historical flow record and various shorter flow periods to identify the optimal time period of the model scenarios. Additionally, it is helpful if a time period can be selected when boundary forcing conditions are available from the previously completed Gulf Coast Shelf Model (GCSM) runs for 1995-2002. These model runs provide offshore conditions for salinity, temperature, and water surface elevation which can serve as boundaries for the St. Marks/Wakulla EFDC hydrodynamic model.

A comparison of the distribution of the baseline time series of flows and the distribution of flows during the period for which GCSM output exists was performed to identify a subset of the baseline time series that possesses, to the greatest extent possible, a similar range of flows for use in the EFDC model, and potentially, HEC-RAS model scenarios. The selection of the time period will ensure that there is not a bias (e.g. relatively higher or lower flows) associated with climatic conditions.

The Rise flow record extends from October 1, 1956 to August 10, 2017, and contains the following gaps in the flow record: October 26, 1994 - June 30, 1996, and September 30, 2004 - April 29, 2005. Due to the gaps in the flow record, the overlapping period of the Rise flow record with the GCSM model output is July 1, 1996 - December 31, 2002. This was the period of the Rise flow record that was examined further to determine the most appropriate modeling period. Figure 44 presents the Rise flow time series for this time period.



#### St. Marks River Rise Flows July 1, 1996 - December 31, 2002

Figure 44. St. Marks River Rise flow time series for the period July 1, 1996 - December 31, 2002.

A comparison of the distribution of the baseline daily flows (October 1, 1956 – August 10, 2017) and the distribution of flows during the shorter period for which GCSM output existed indicated that the flow distribution for the period May 1, 1997 – May 31, 1999, is representative of the period of record flows. Figure 45 provides a graphical display of the distributions of flows for the May 1, 1997 – May 31, 1999 period and flows for the complete period of record, and Table 10 provides comparison of the flow distribution statistics for the period of record to those for the 25-month period (May 1, 1997 – May 31, 1999). Both Figure 45 and Table 10 show that the modeling period of May 1, 1997 – May 31-1999 is representative of the exceedance curve and percentile flows of the full period of record.

Based on this analysis, it is recommended to use the daily flows at the Rise from May 1, 1997- May 31, 1999 to represent baseline conditions for modeling purposes. This time series will also be

utilized to evaluate the impacts of spring flow reduction scenarios on water resource values for the St. Marks River.

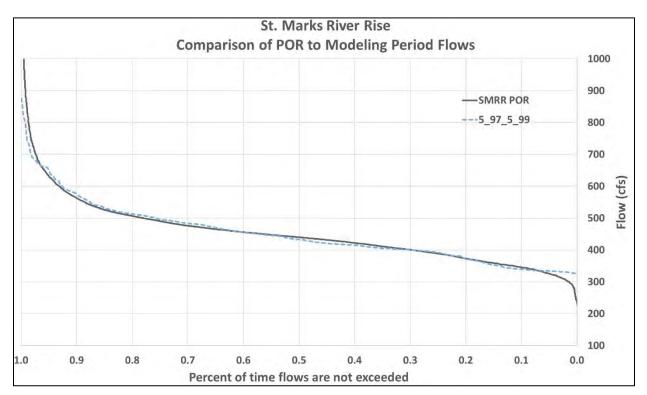



Figure 45. Comparison of flow distributions for period of record (October 1, 1956 – August 10, 2017) and the selected 25-month baseline period (May 1, 1997 – May 31, 1999).

Table 10.Comparison of flow distribution statistics for the period-of-record (October 1,<br/>1956 – August 10, 2017) and 25-month modeling period (May 1, 1997 – May 31,<br/>1999).

| Flow percentile | Baseline Flow (cfs) | Modeling Period Flow (cfs) |
|-----------------|---------------------|----------------------------|
| 5th             | 325                 | 334                        |
| 10th            | 345                 | 340                        |
| 25th            | 388                 | 391                        |
| 50th (median)   | 440                 | 433                        |
| 75th            | 490                 | 496                        |
| 90th            | 562                 | 575                        |
| 95th            | 629                 | 653                        |
| Mean            | 451.8               | 450.9                      |

## 7 References

Box, G.E.P., G.M. Jenkins, and G.C. Reinsel. 1994. Time Series Analysis, Forecasting and Control. 3rd ed. Prentice Hall, Englewood Cliffs, NJ

Cleveland, W.S. 1979. "Robust Locally Weighted Regression and Smoothing Scatterplots". Journal of the American Statistical Association. **74** (368): 829–836

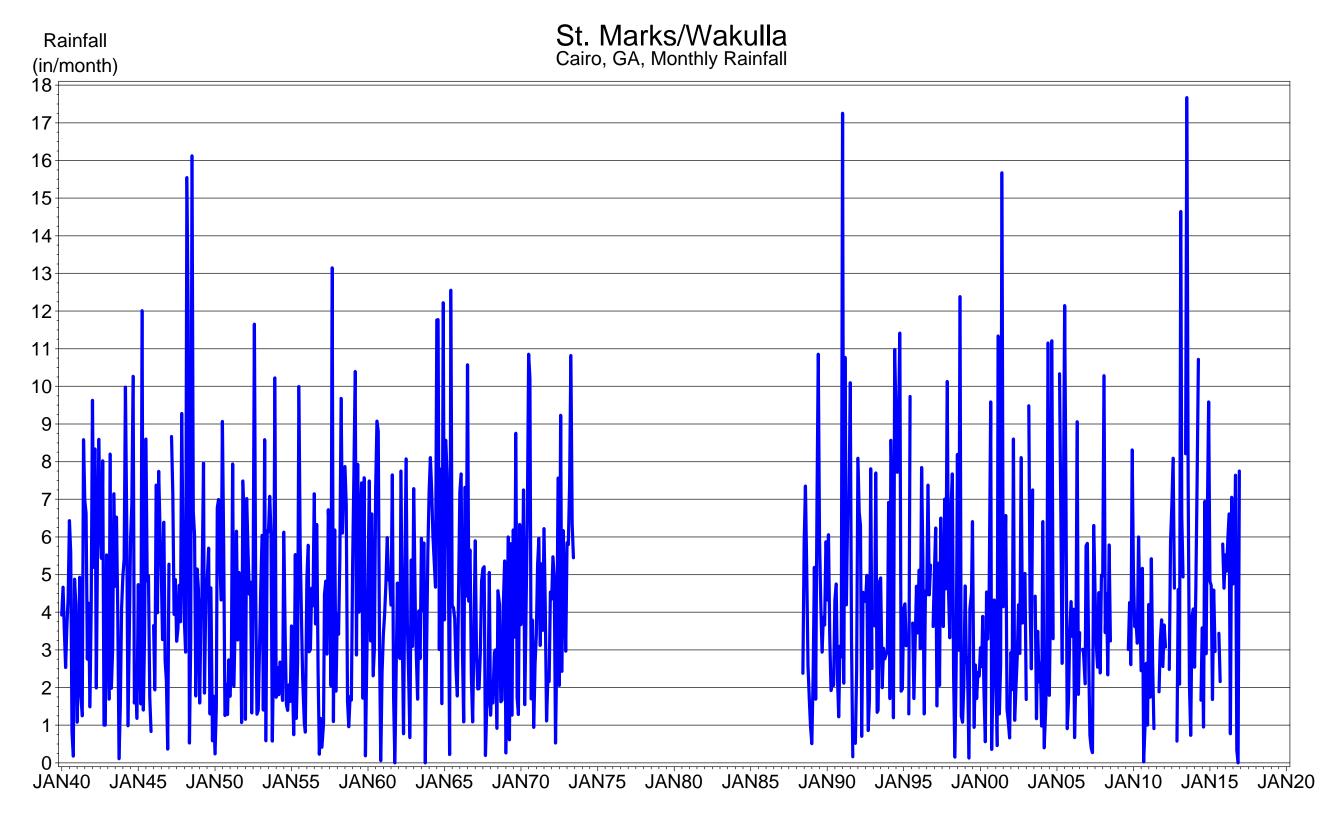
Hirsch, R.M., and J.R. Slack. 1984. A nonparametric trend test for seasonal data with serial dependence. Water Resources Research. V20:6 727-732.

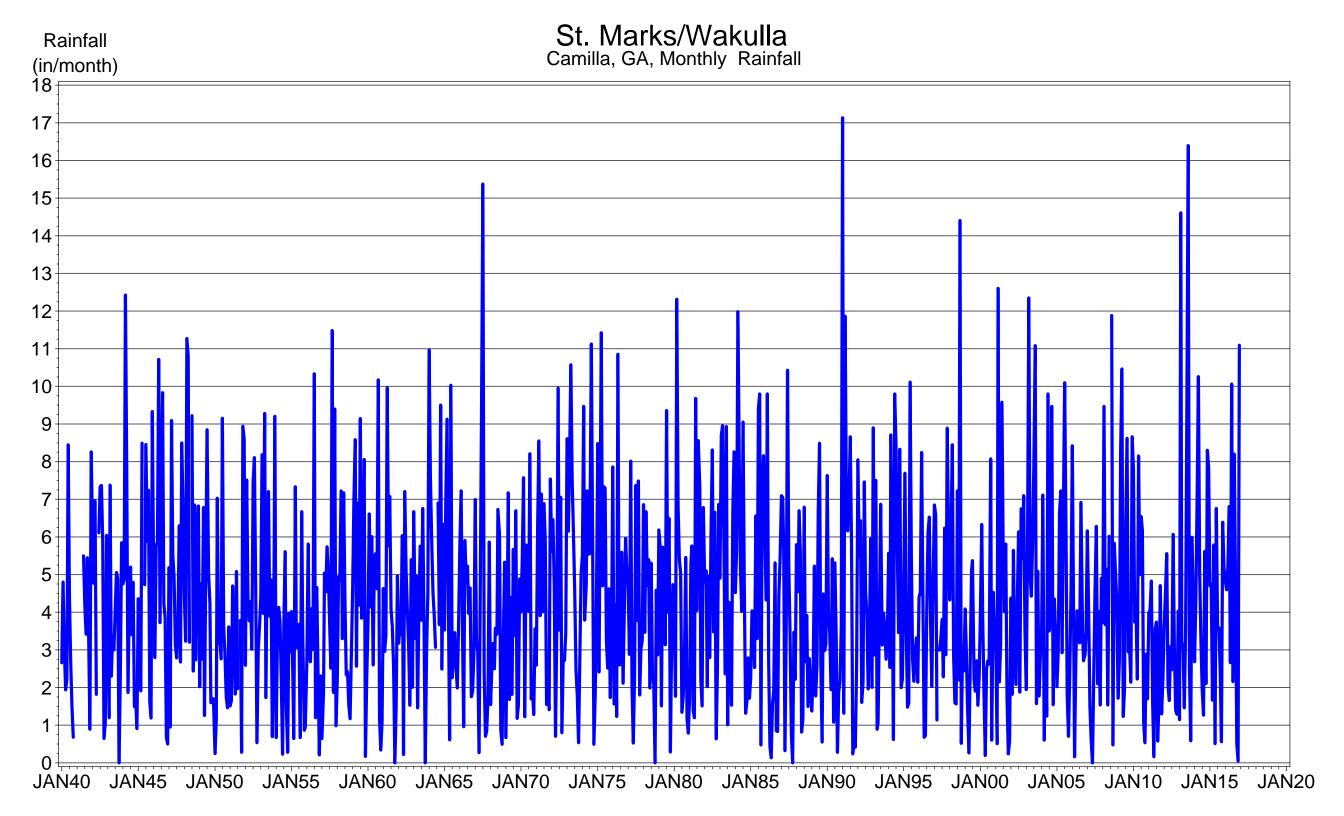
Interflow Engineering, LLC. 2015. Wakulla Spring, Sally Ward Spring, and St. Marks River Rise Minimum Flows and Levels: Task Order # 6 – Preliminary Conceptual Groundwater Model Technical Memorandum.

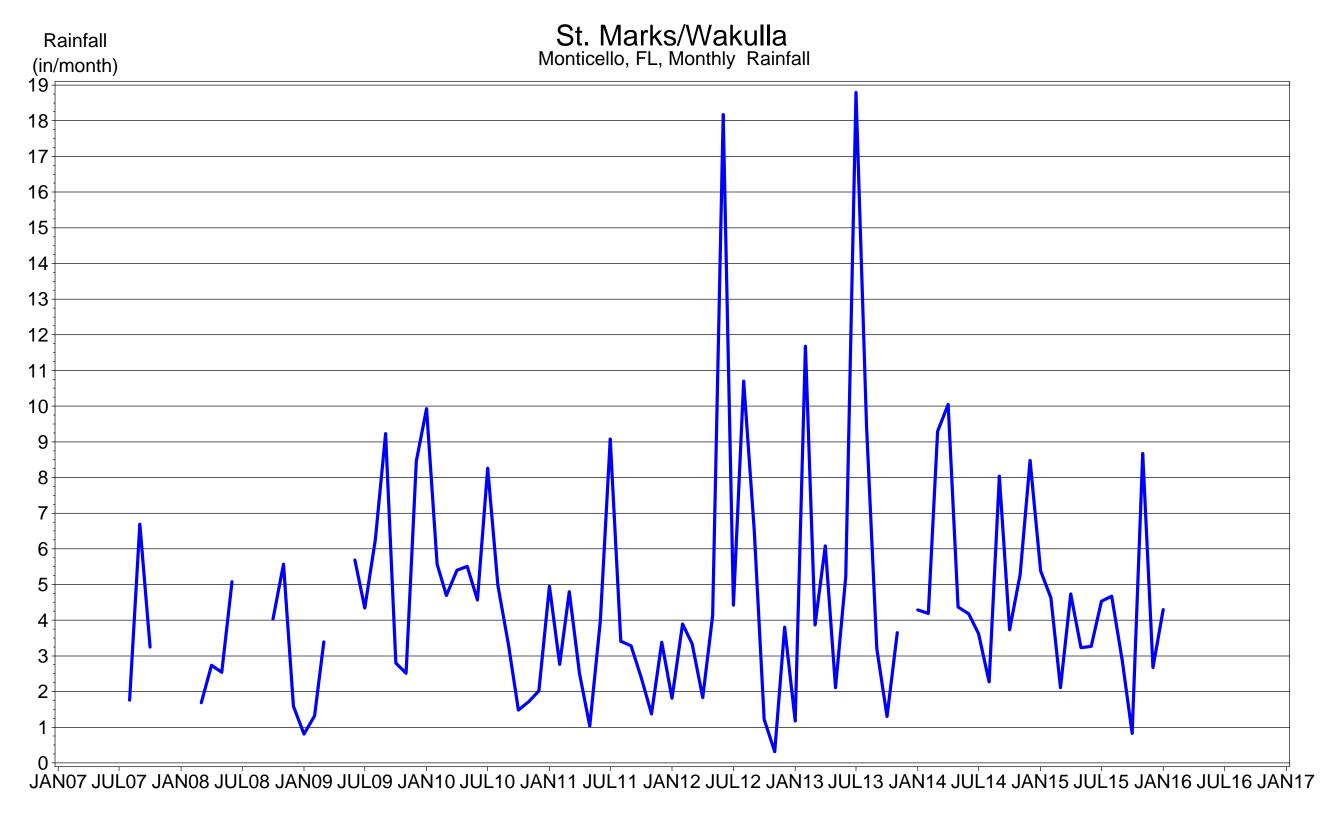
Janicki Environmental, Inc. 2015. Updated Work Plan for Hydrodynamic Model Needs and Recommended Sampling, St. Marks River and Wakulla River. Prepared for Northwest Florida Water Management District, Havana, FL.

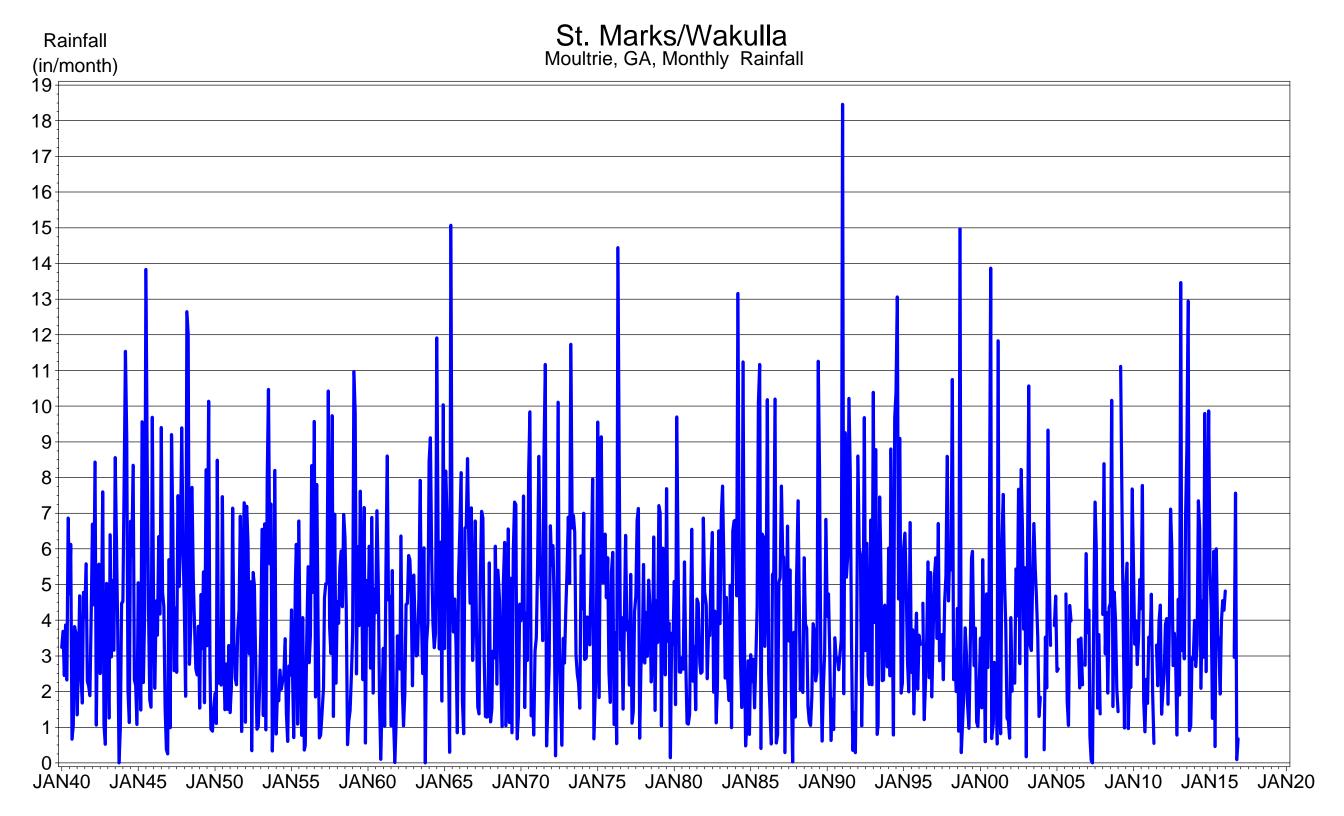
Janicki Environmental, Inc. 2017a. Development of Initial Input Datasets for Hydrodynamic Model Calibration Effort: St. Marks River and Wakulla River. Prepared for Northwest Florida Water Management District, Havana, FL.

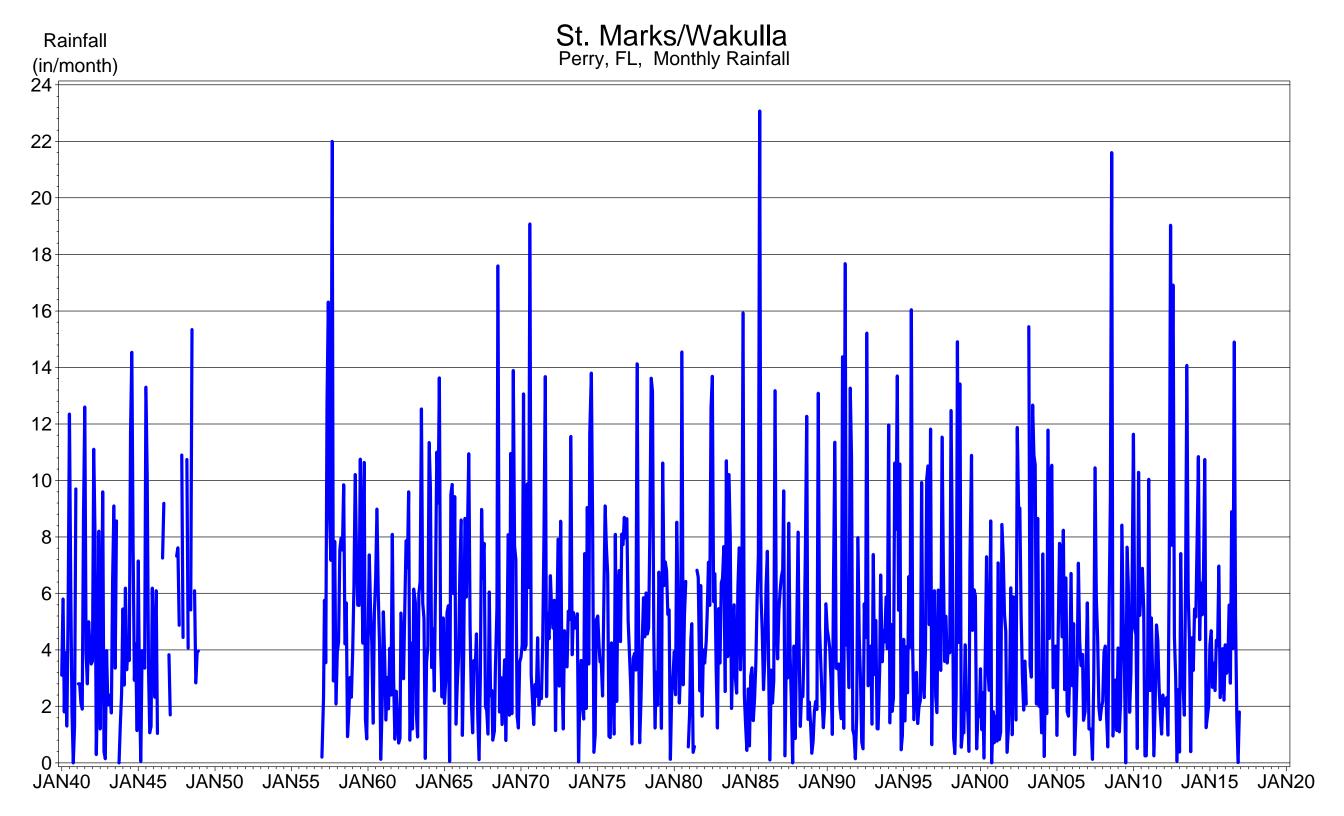
Janicki Environmental, Inc. 2017b. Description of the Calibrated Hydrodynamic Model for the Tidal Portions of the St. Marks and Wakulla Rivers. Prepared for Northwest Florida Water Management District, Havana, FL.

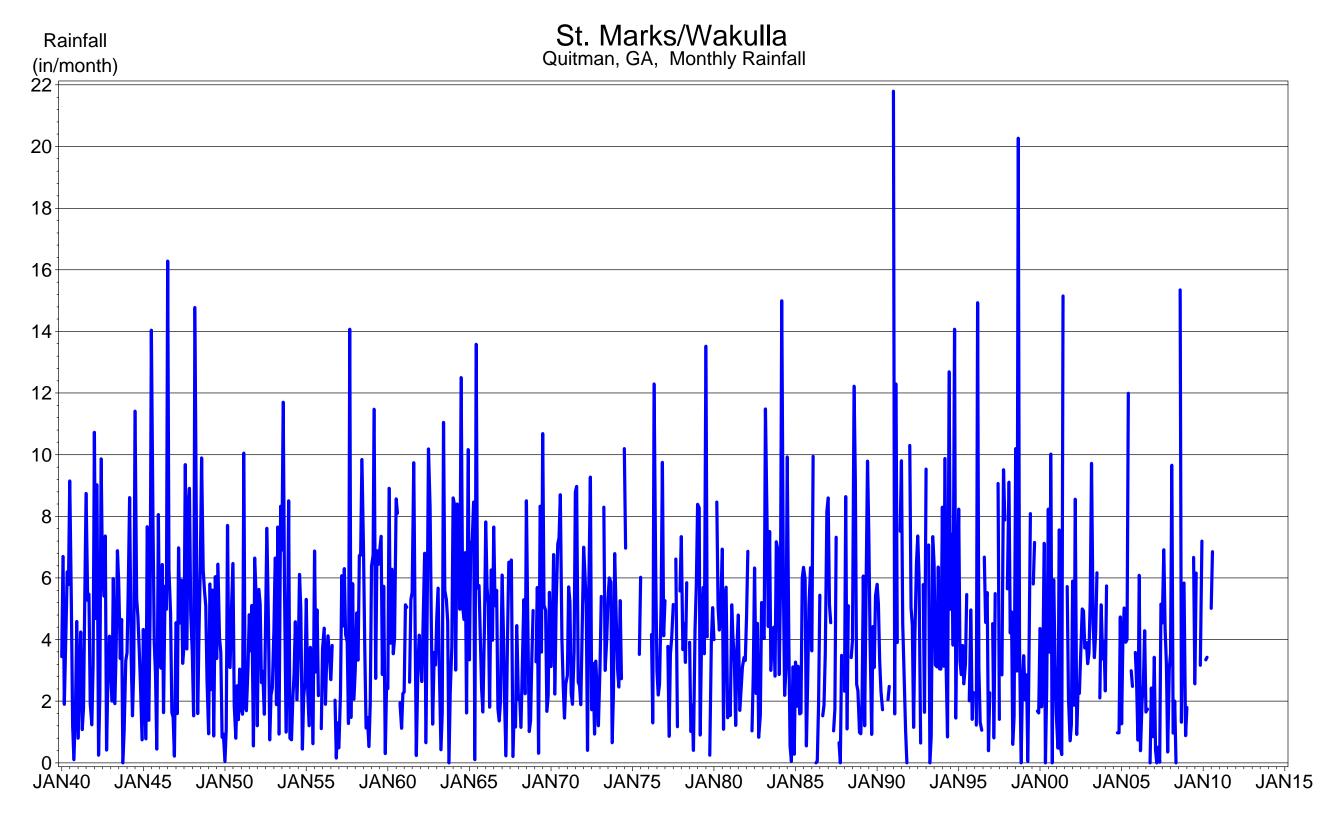

Marchetto, A. 2015. Maintainer of package RKT: R Core Team 2013.

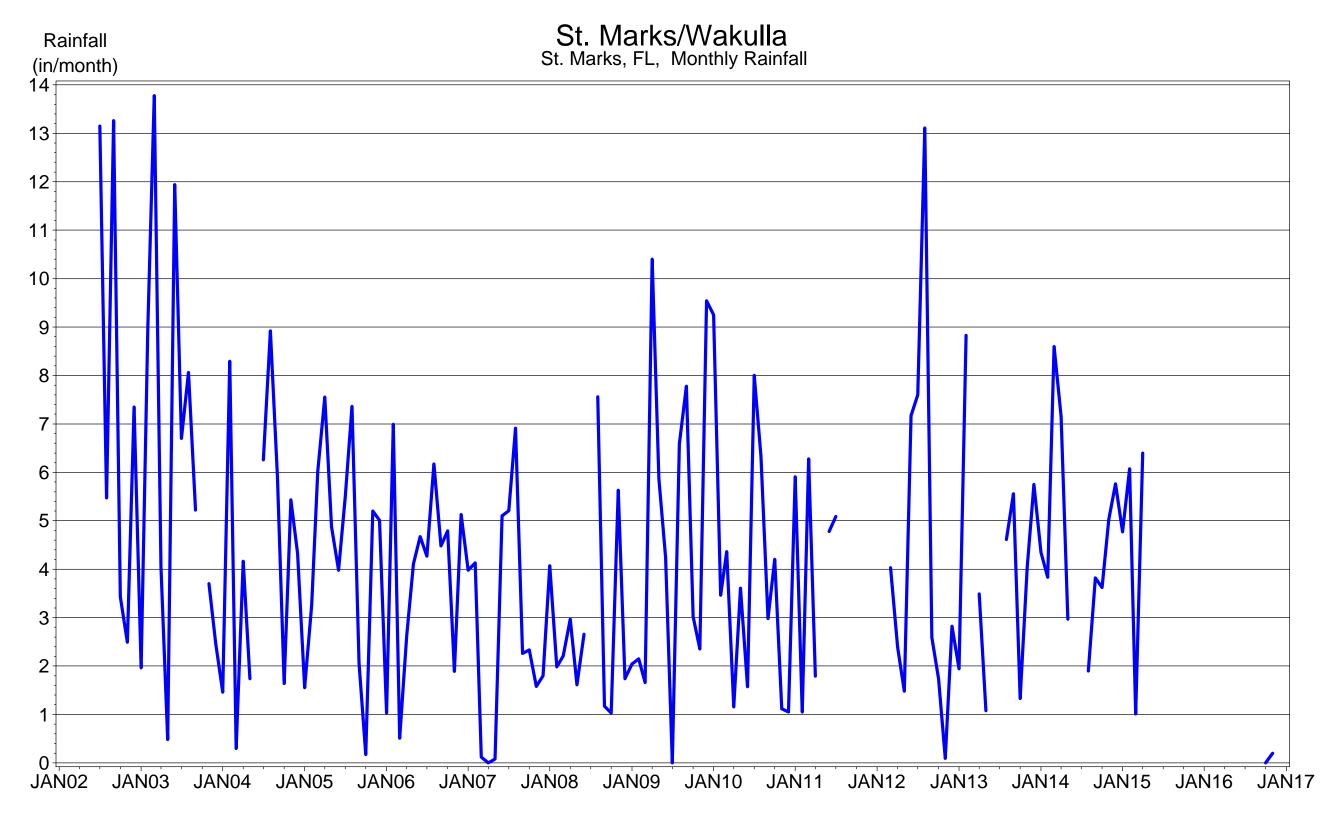

R: Version 3.2.2 (2015-08-14) -- "Fire Safety". A Language and Environment for Statistical Computing. R Core Team. R Foundation for Statistical Computing. Vienna, Austria. 2015. https://www.R-project.org/

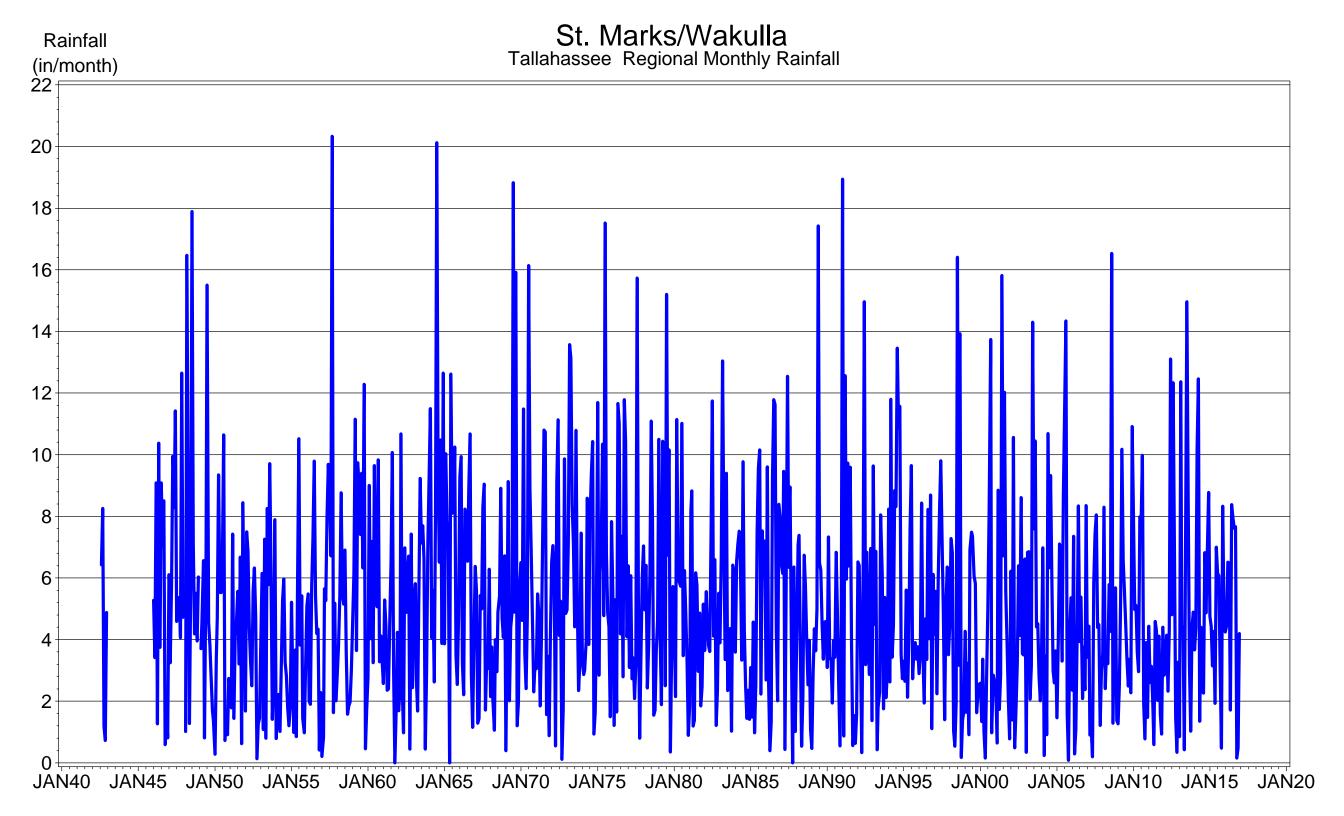

SAS Institute Inc. 2015. Version 9.4 . Cary, NC.

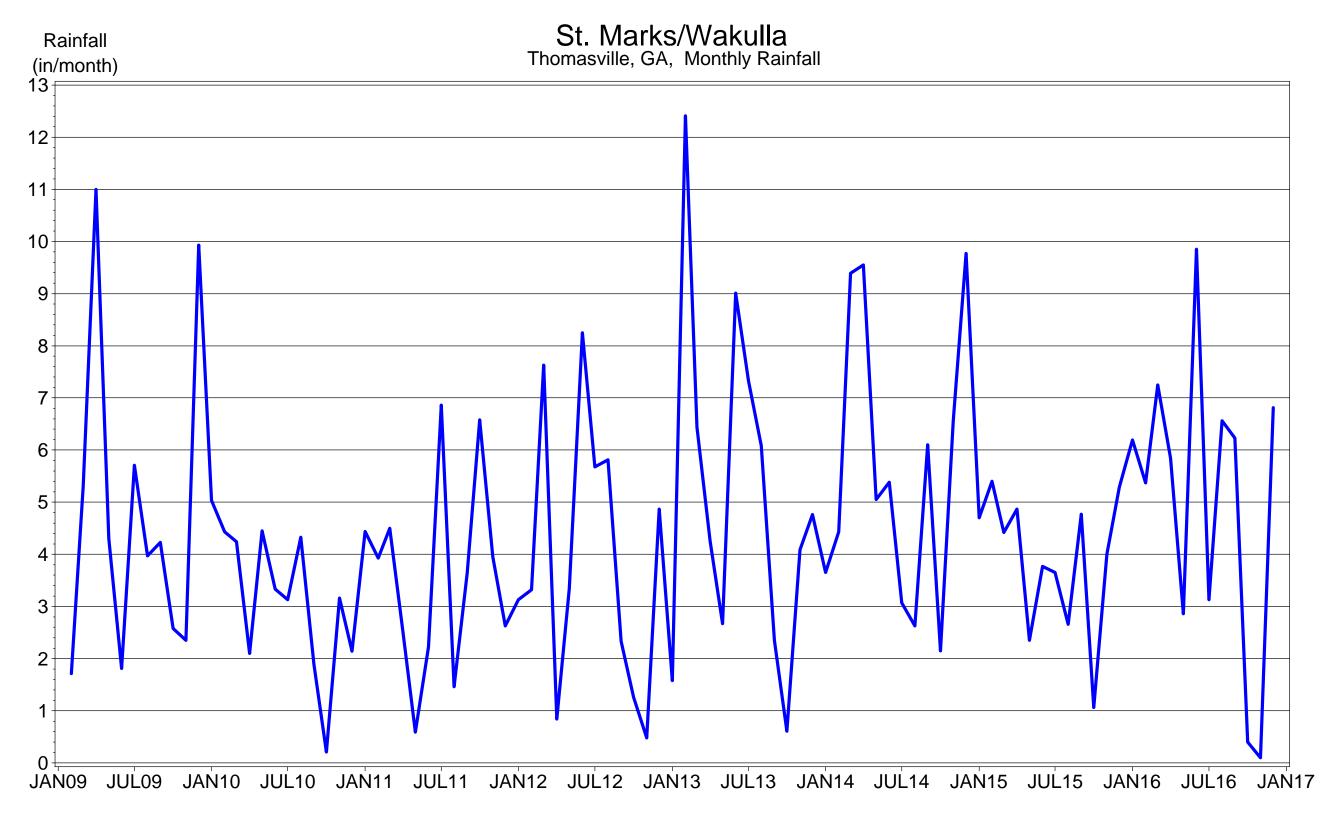

Searcy, J. K., and C. H. Harbison. 1960. Double Mass Curves. Manual of Hydrology: Part 1. General Surface-Water Techniques. United States Geological Survey Water Supply Paper 1541-B. United States Government Printing Office, Washington D. C.

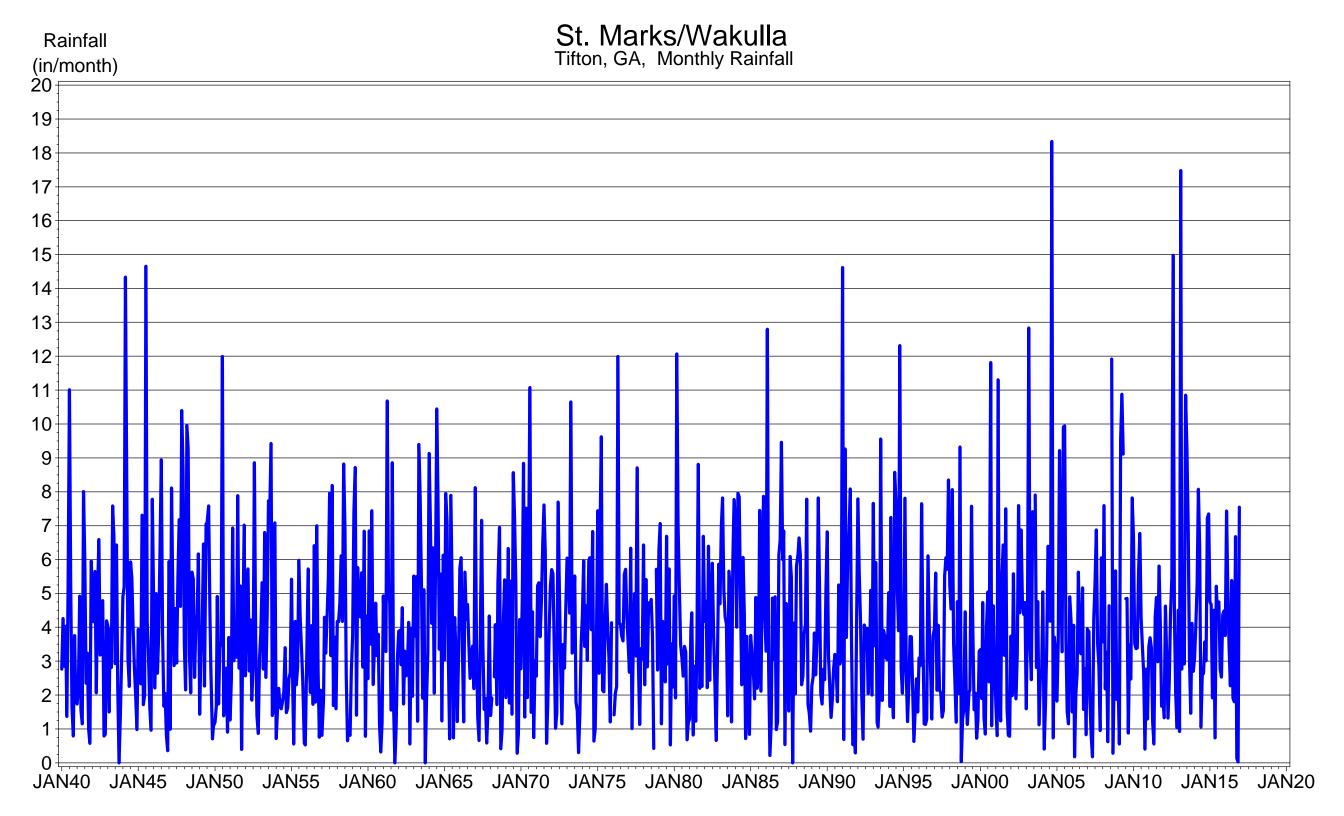

# ATTACHMENT 1: PLOTS OF AVAILABLE DATA

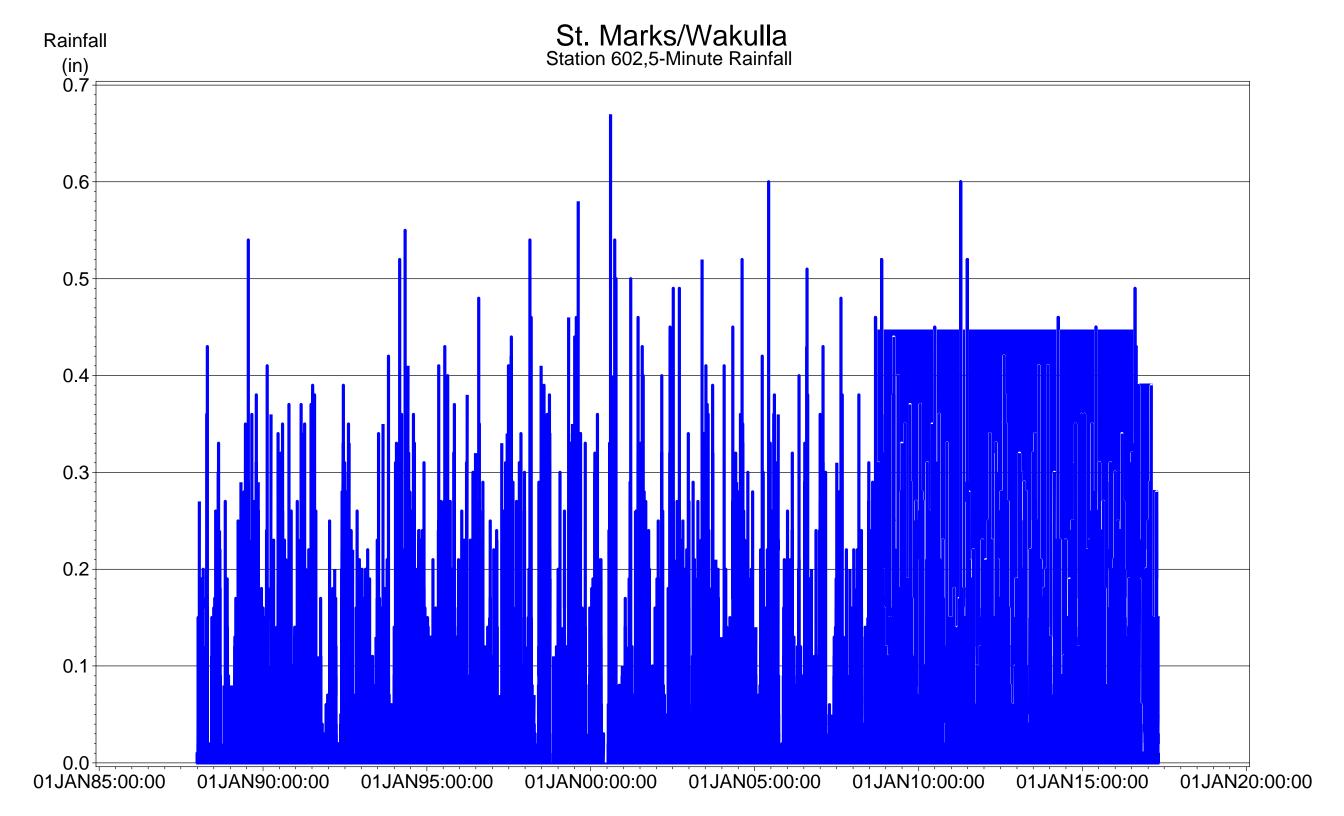


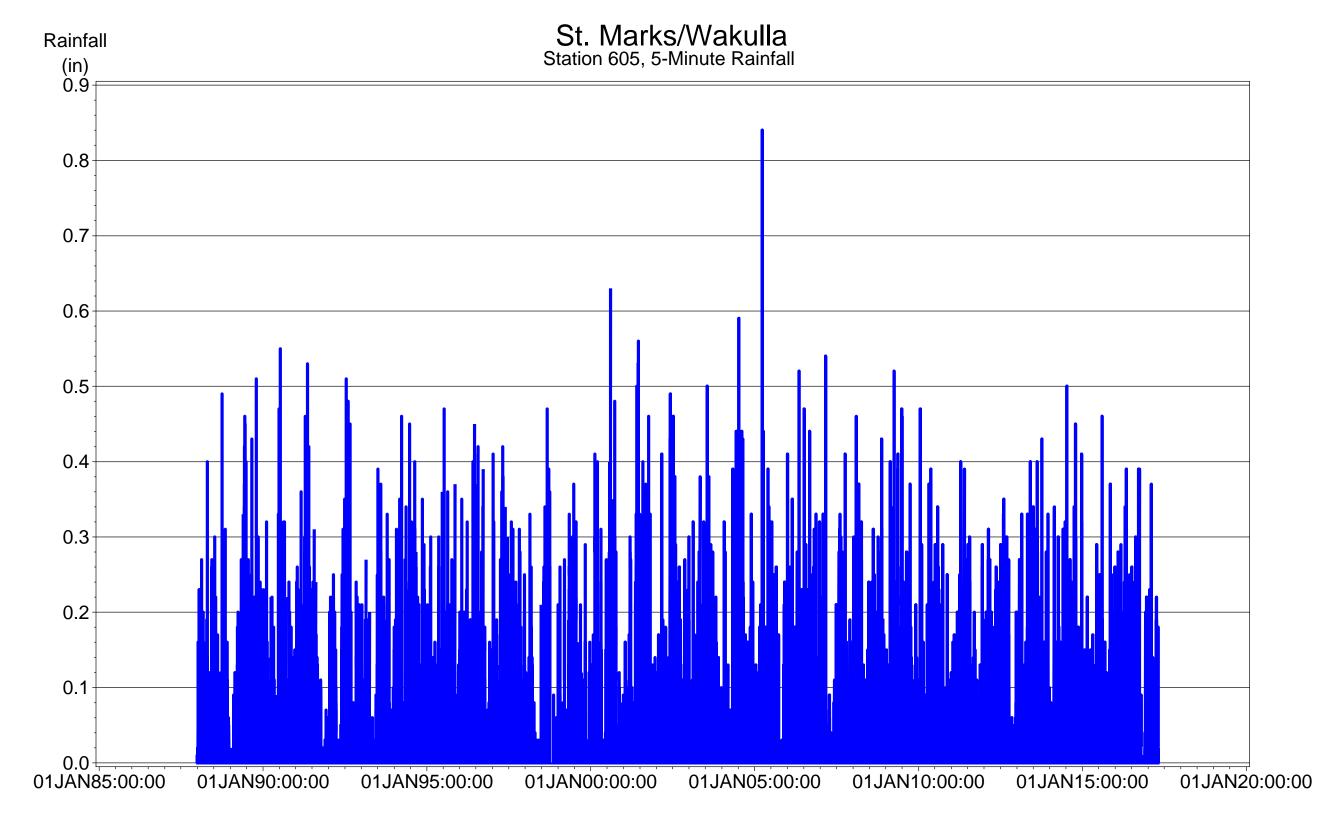



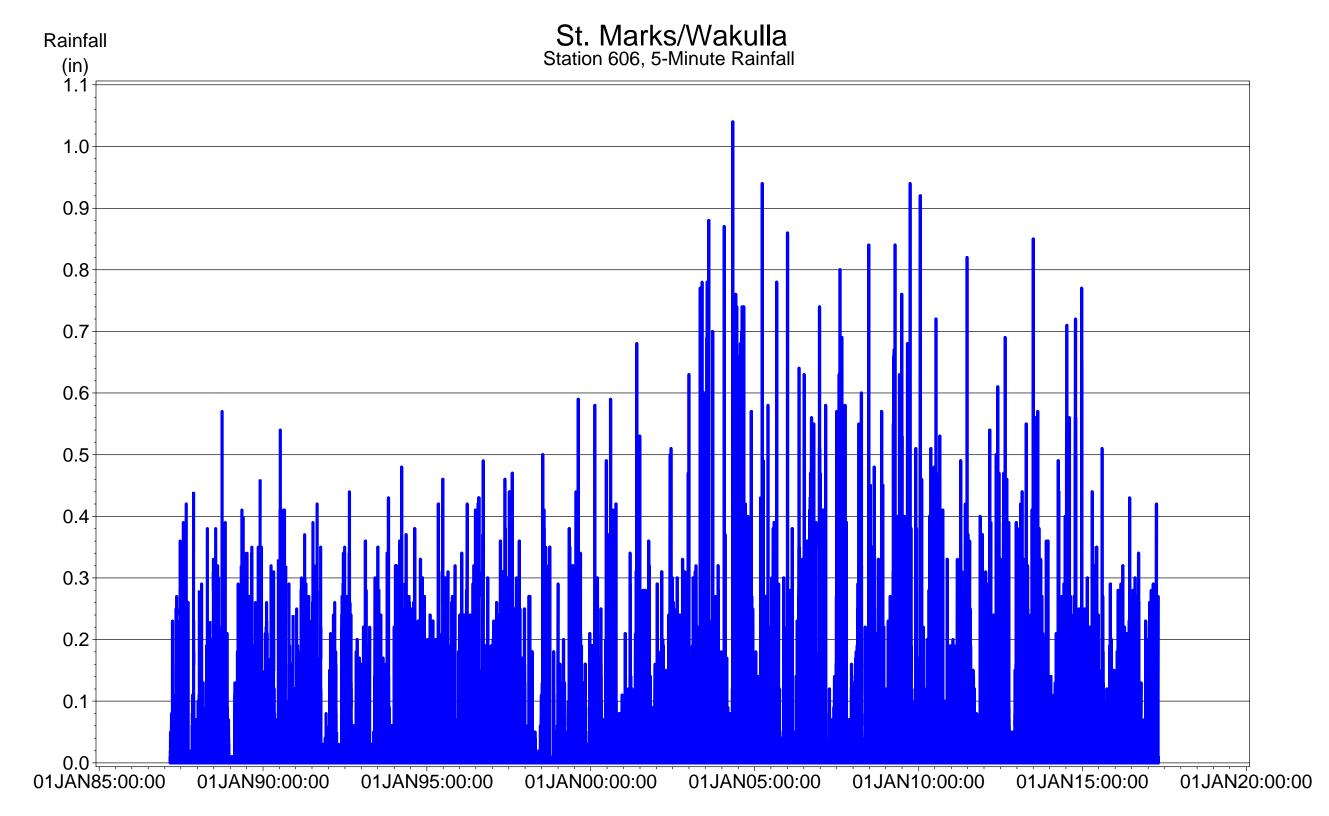



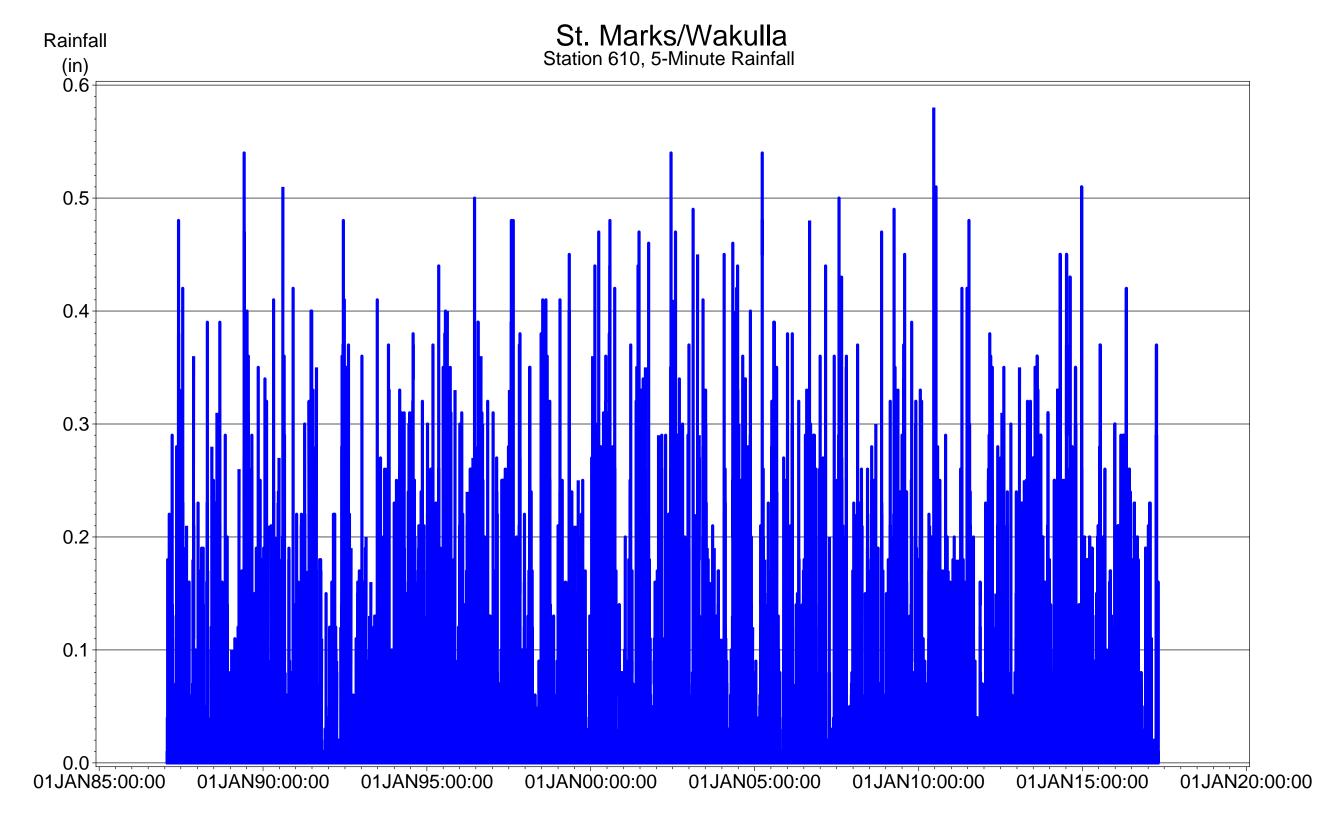



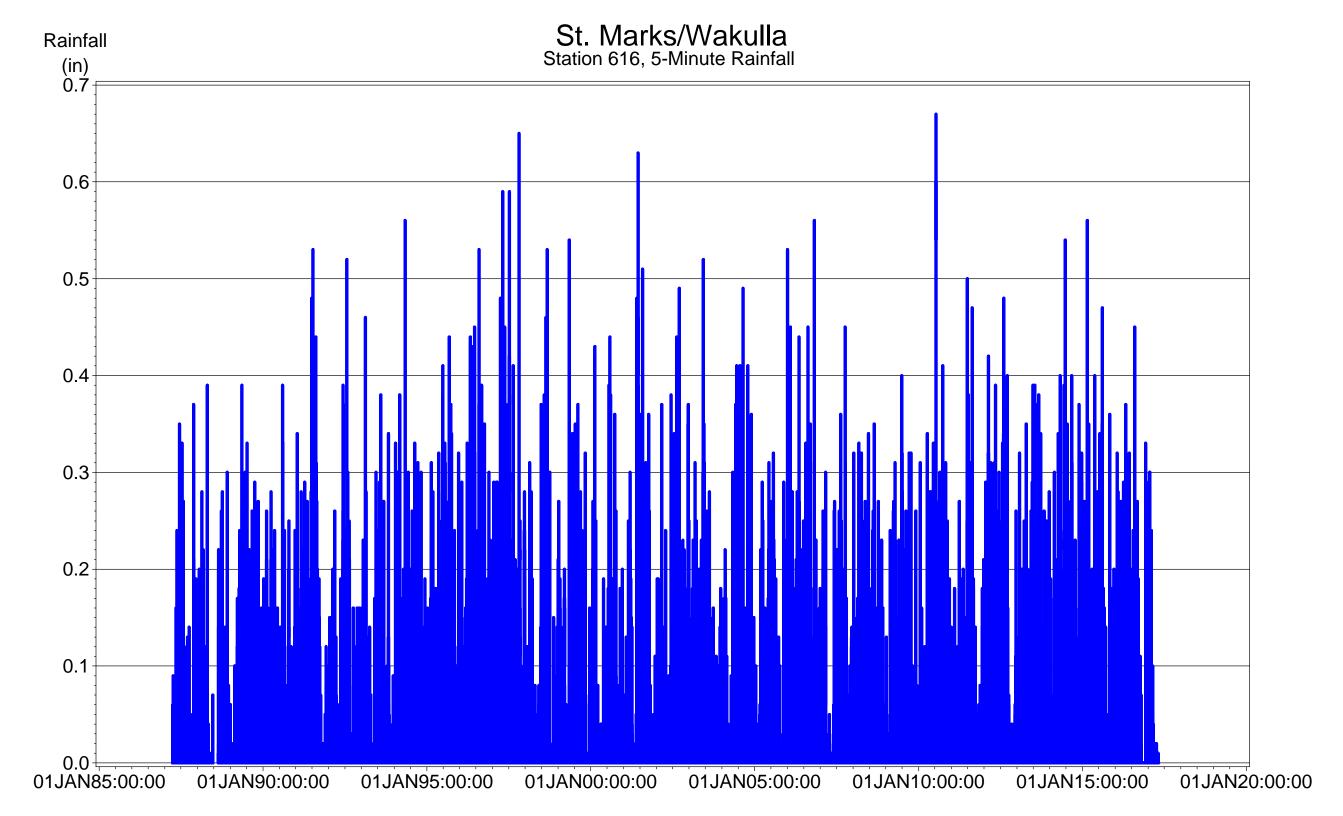



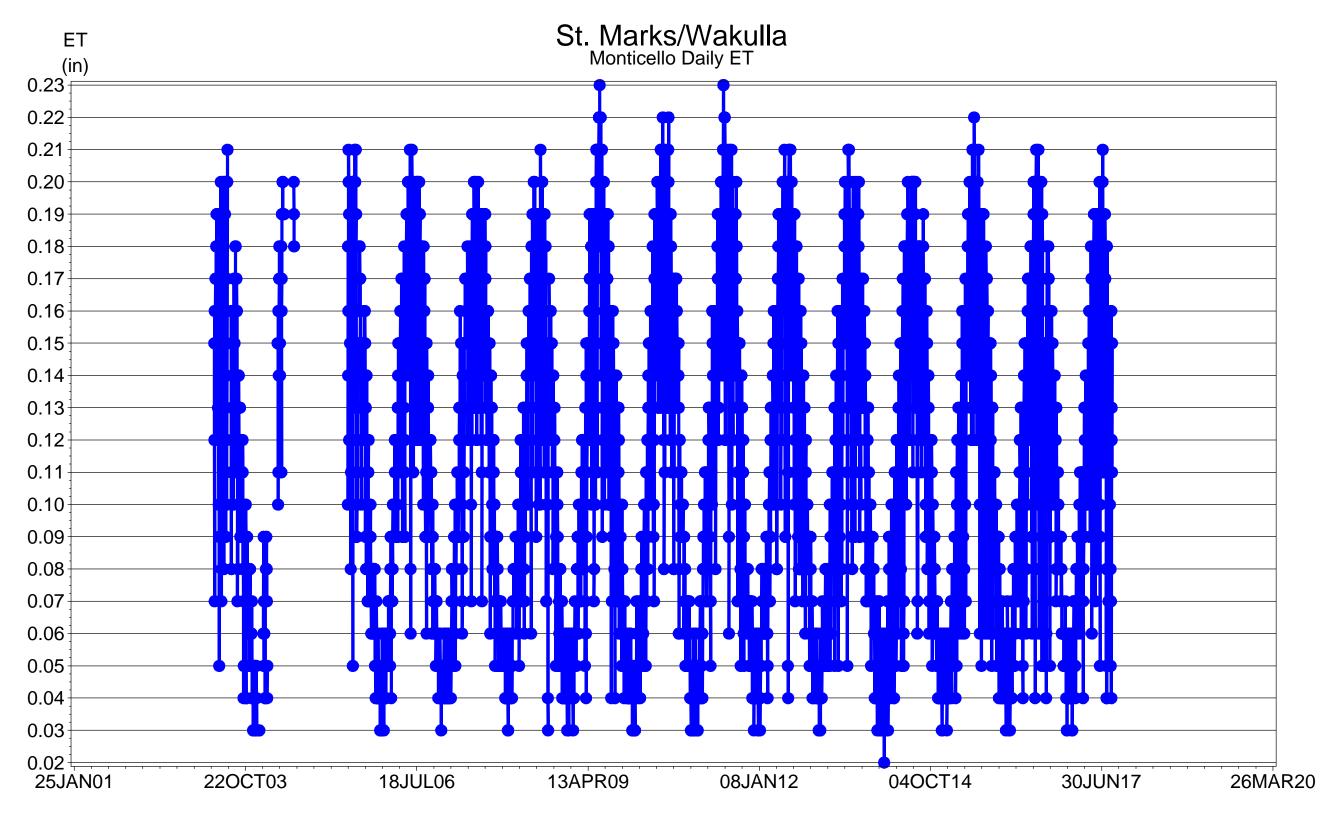



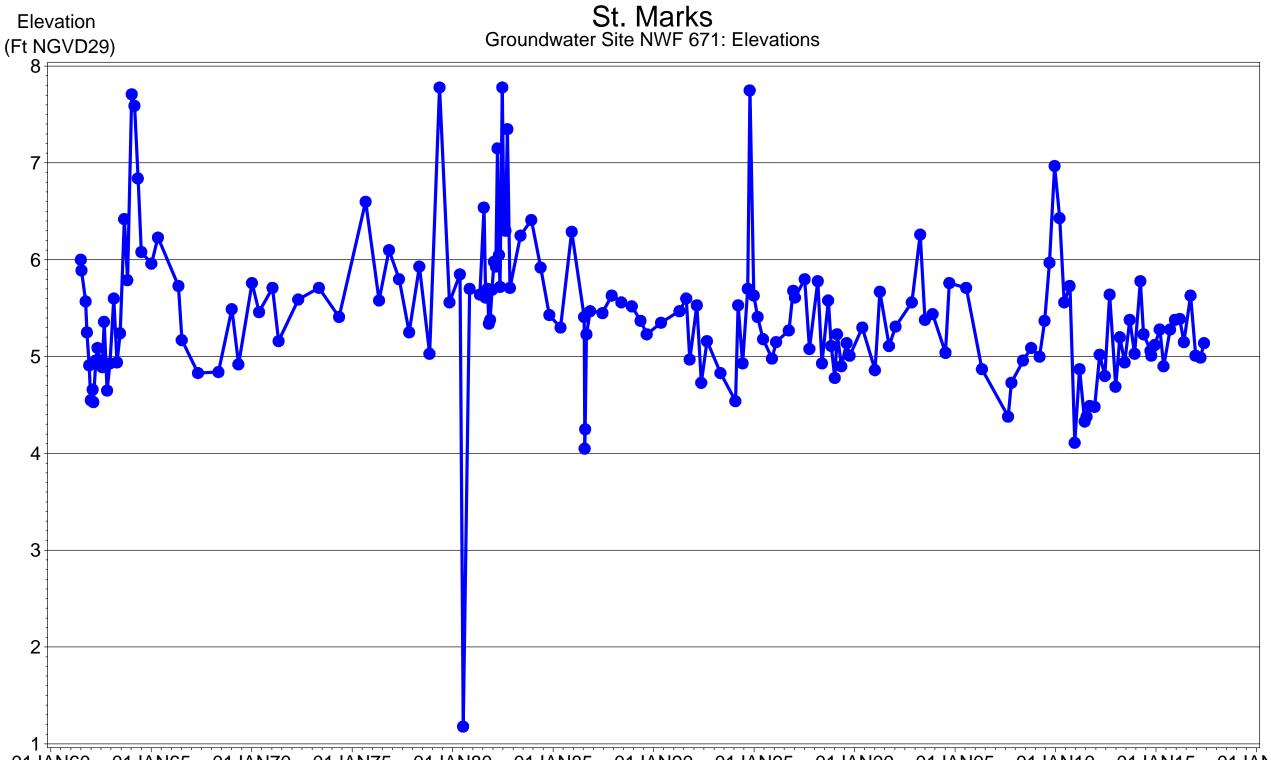





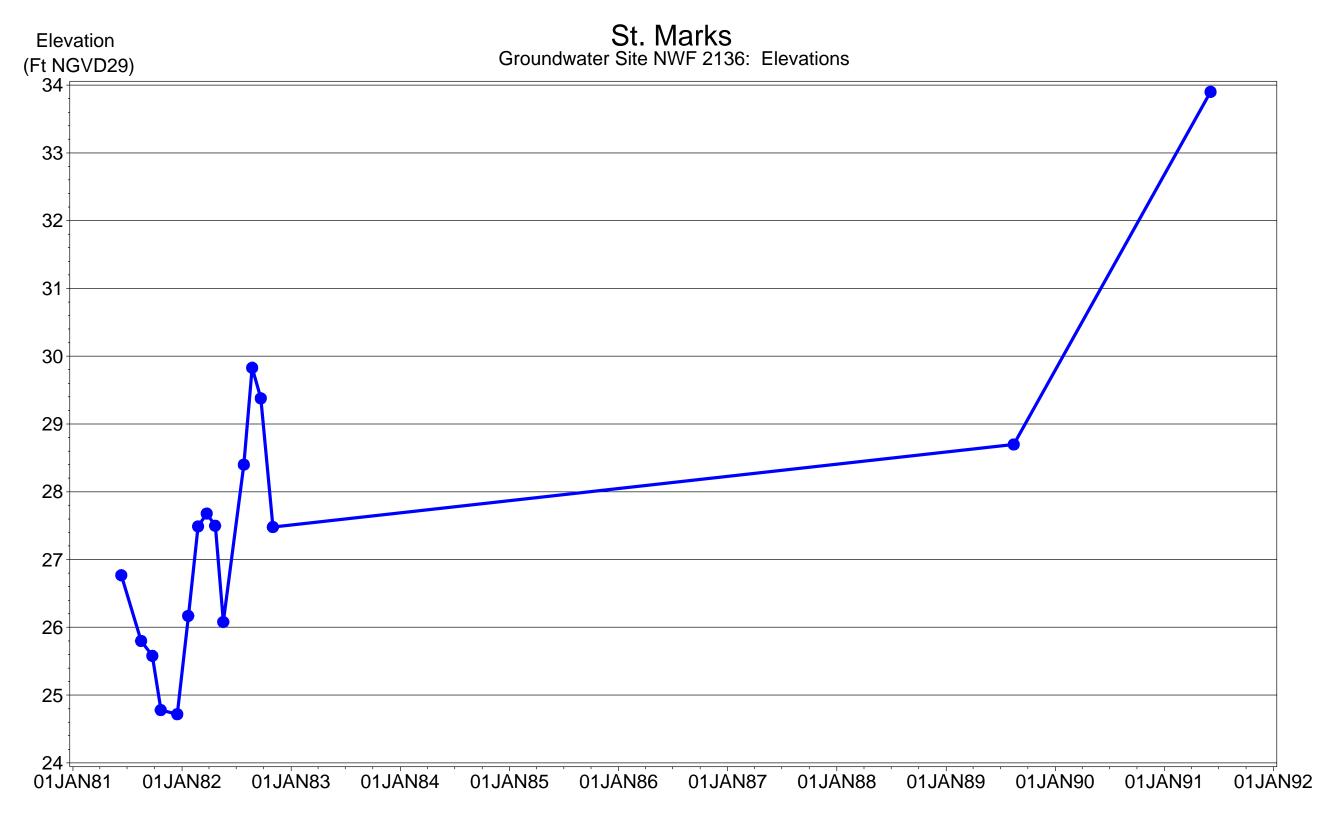


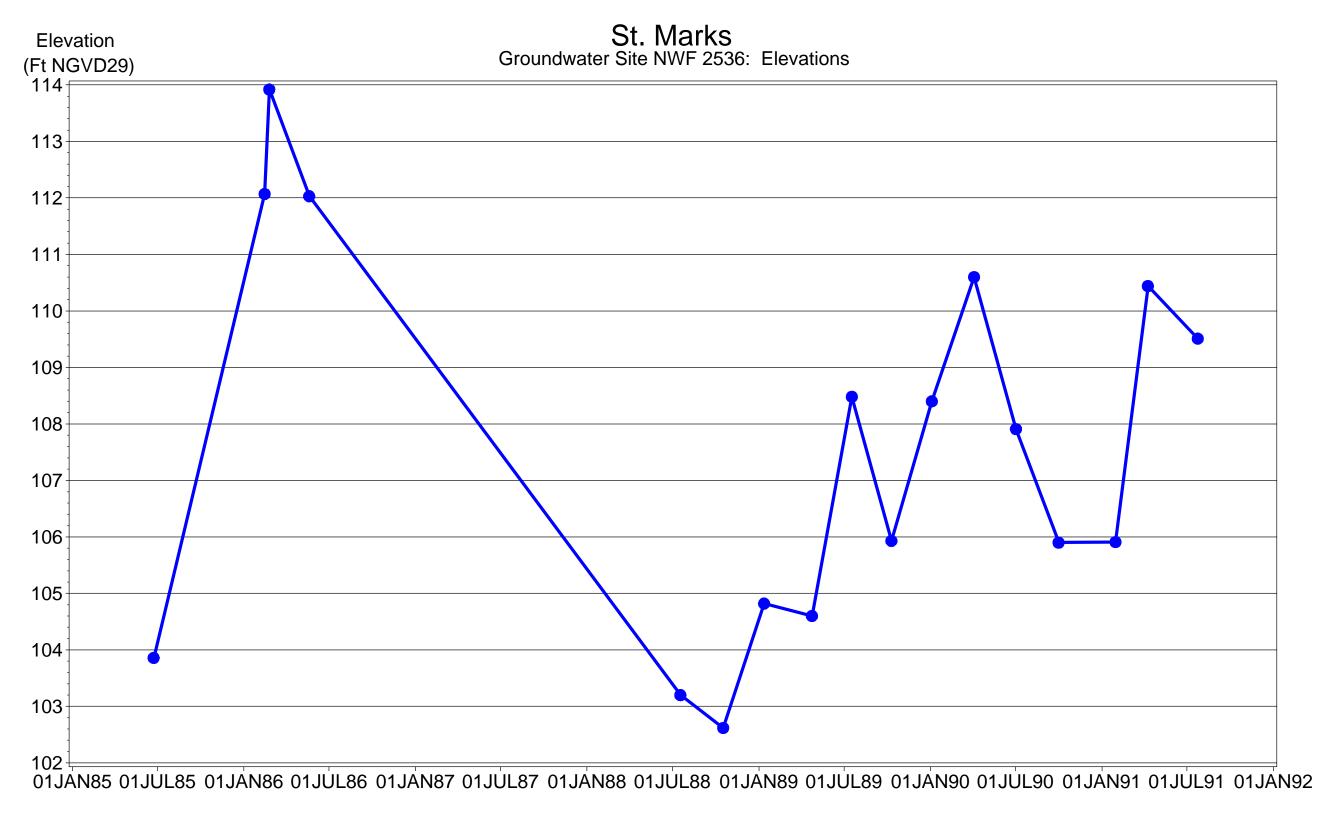


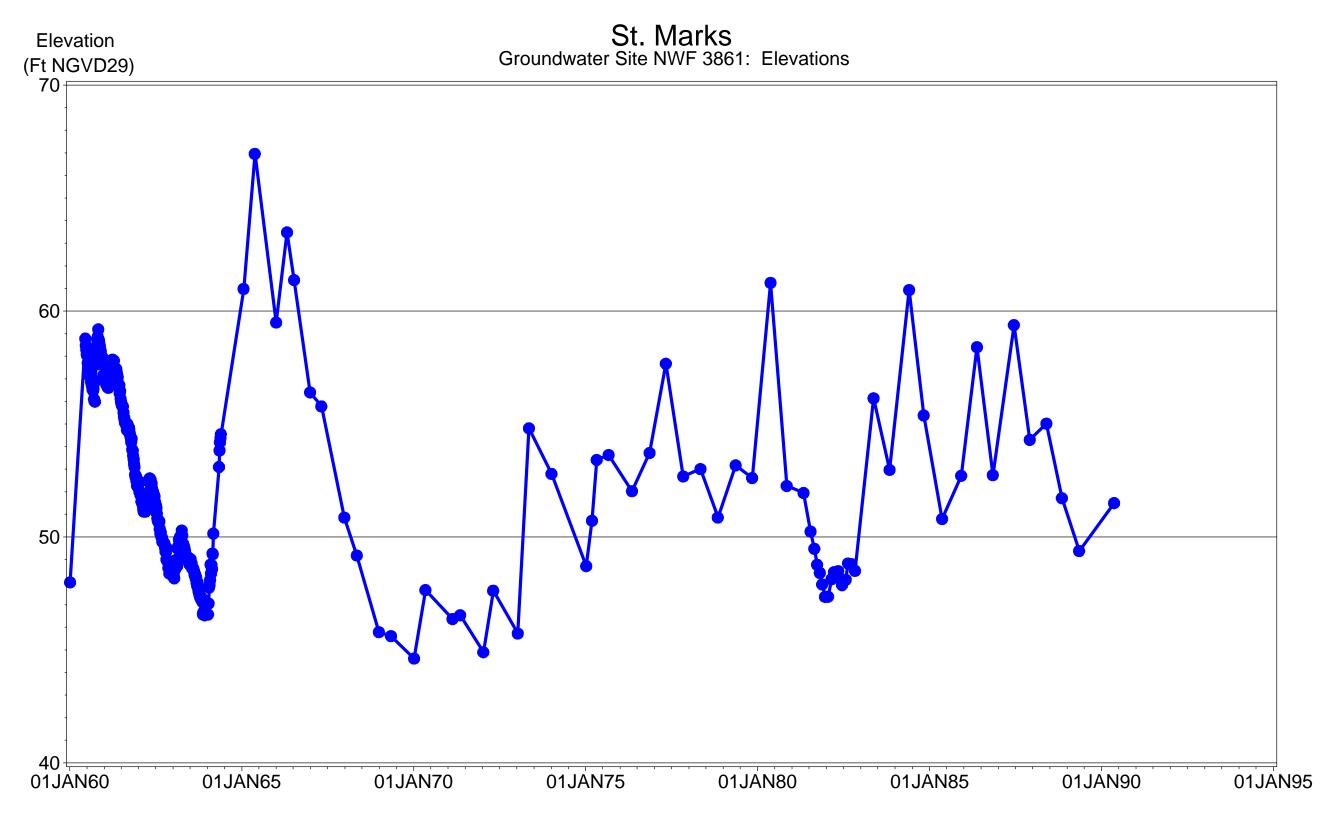



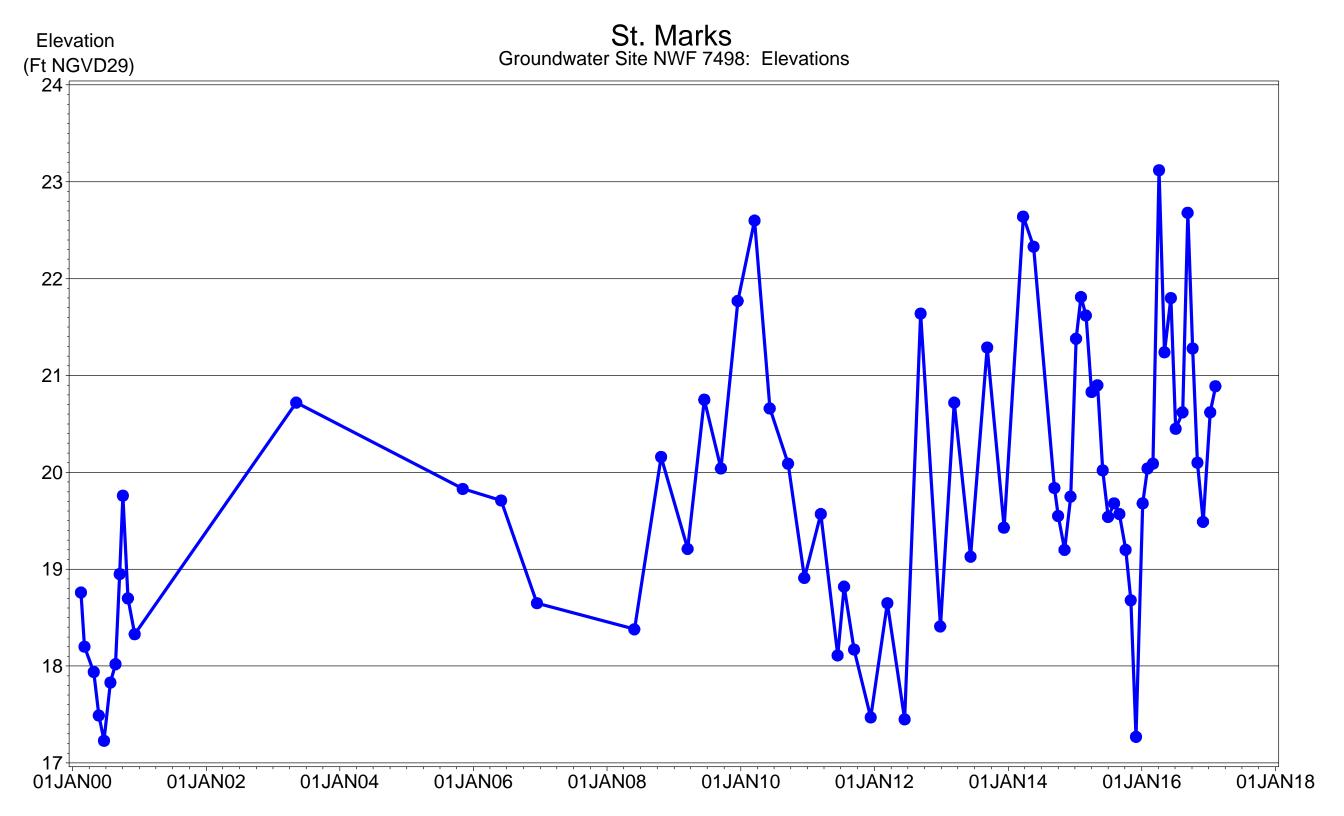



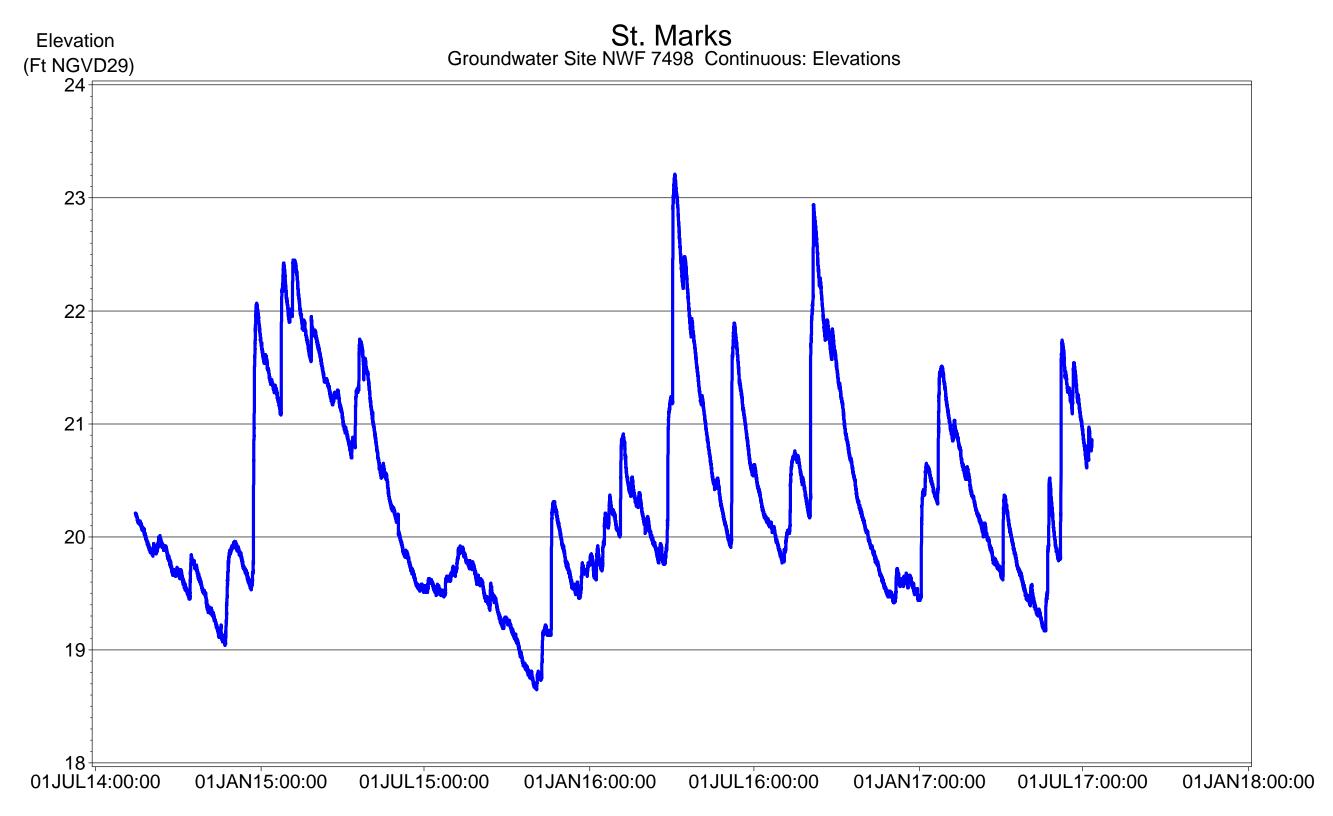


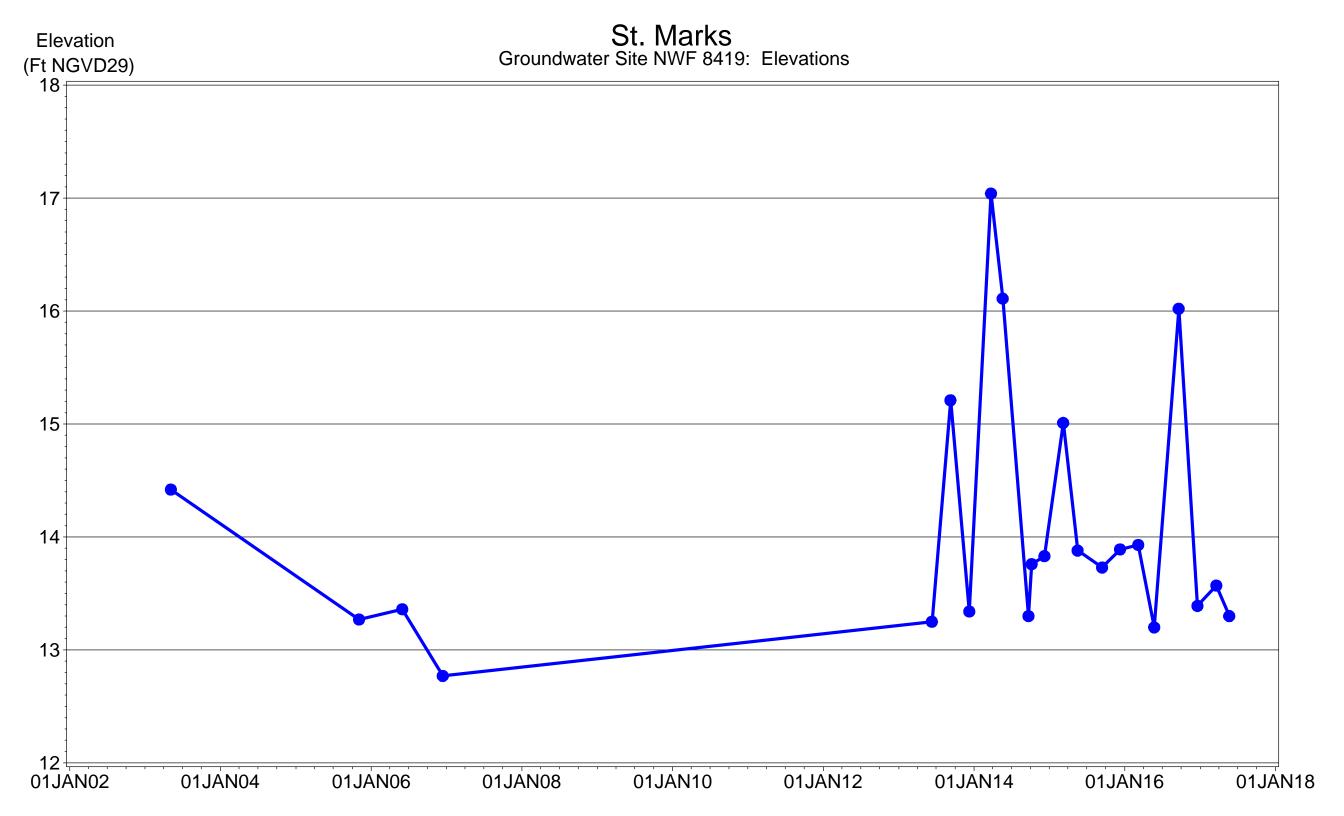



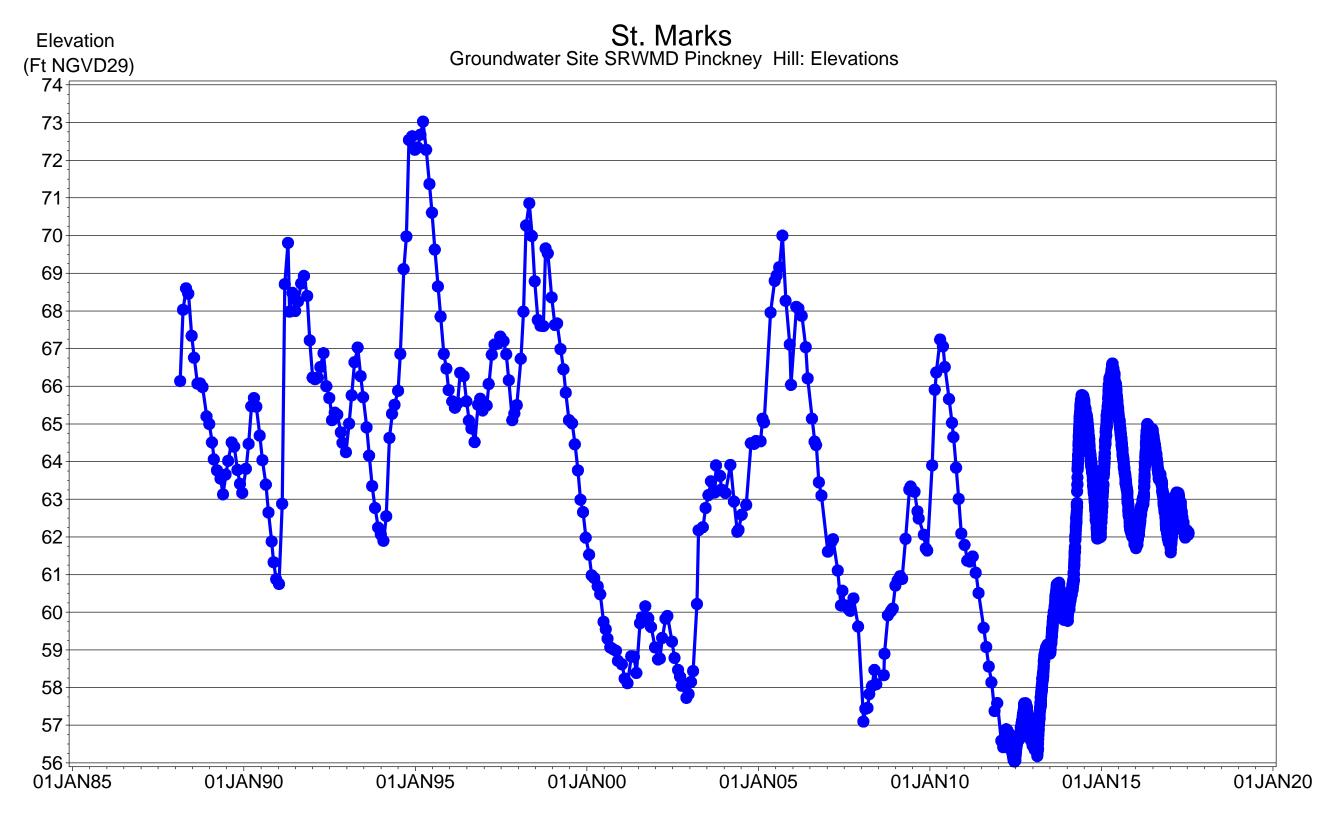



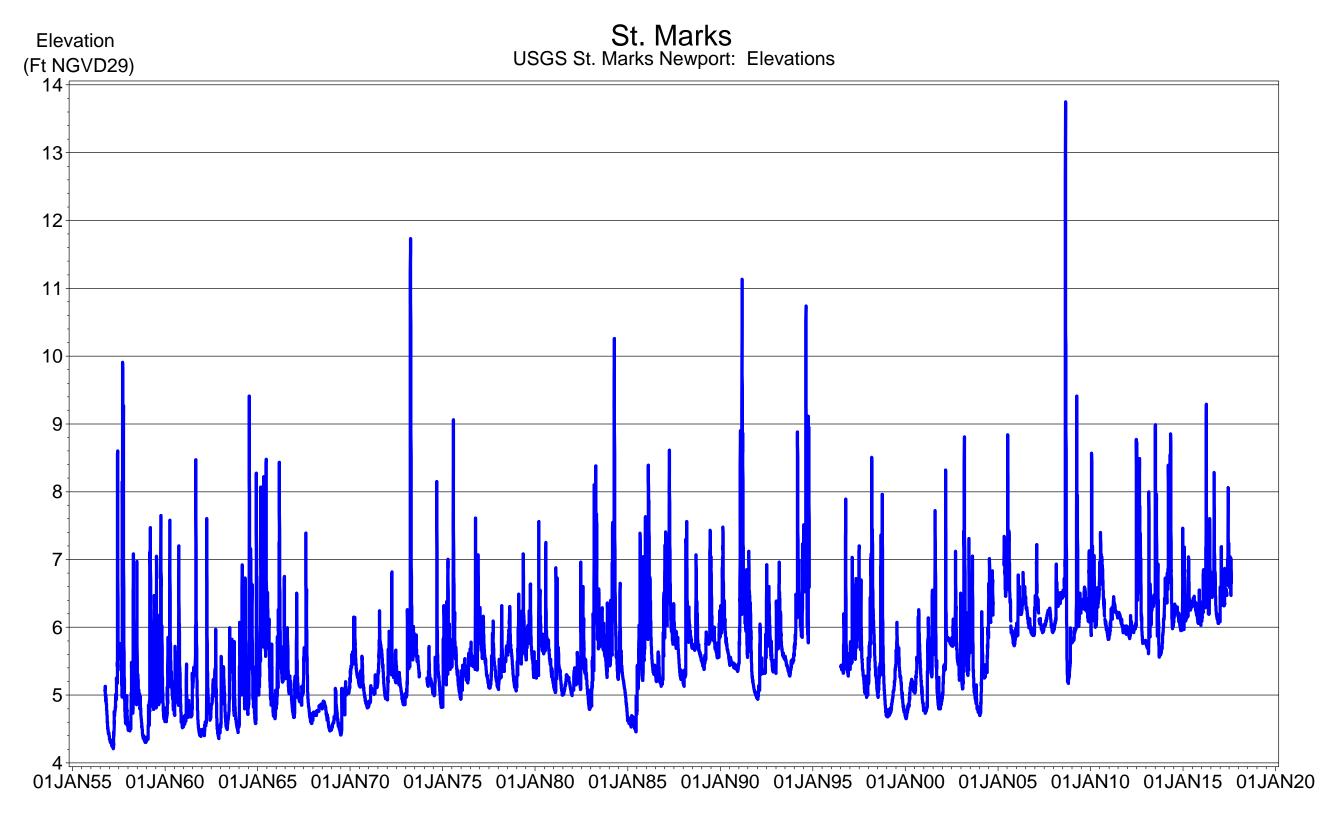



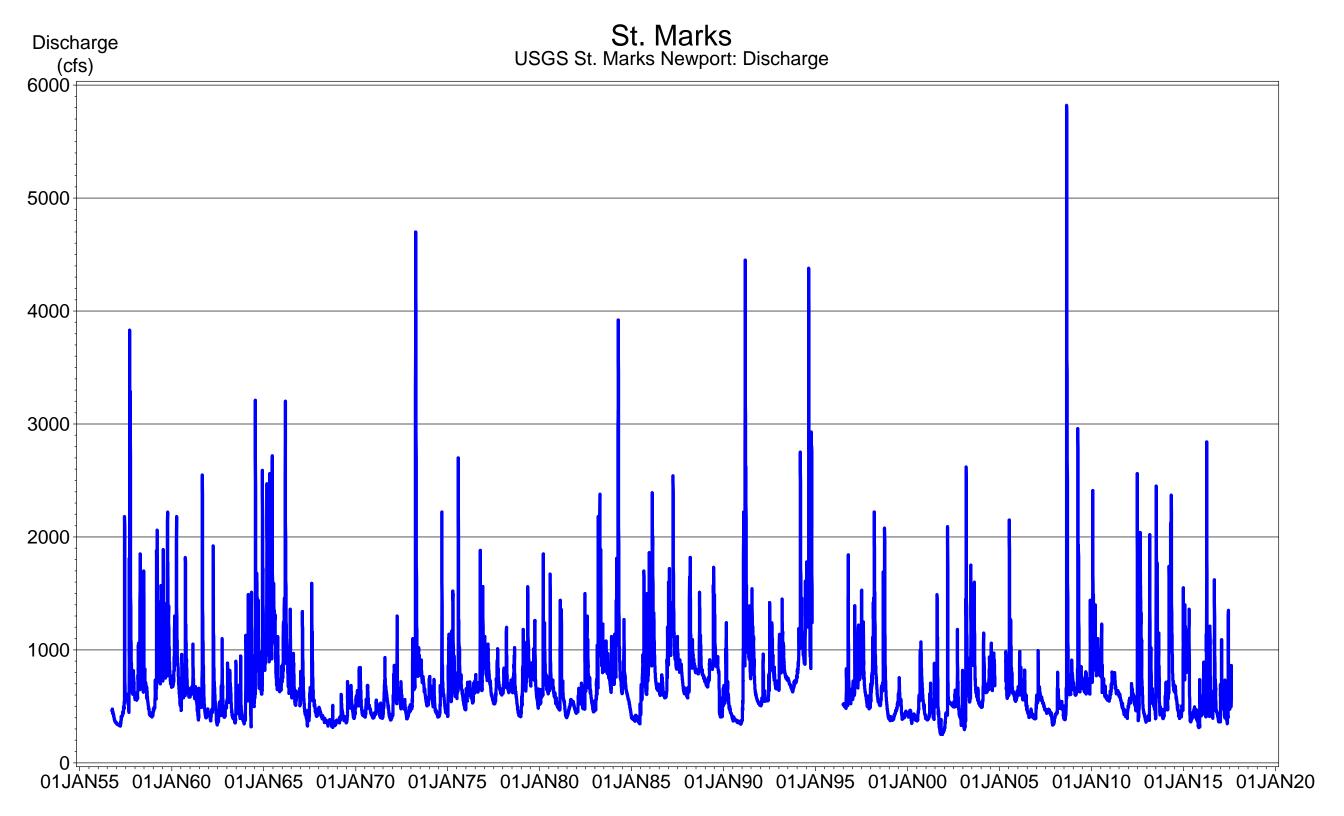



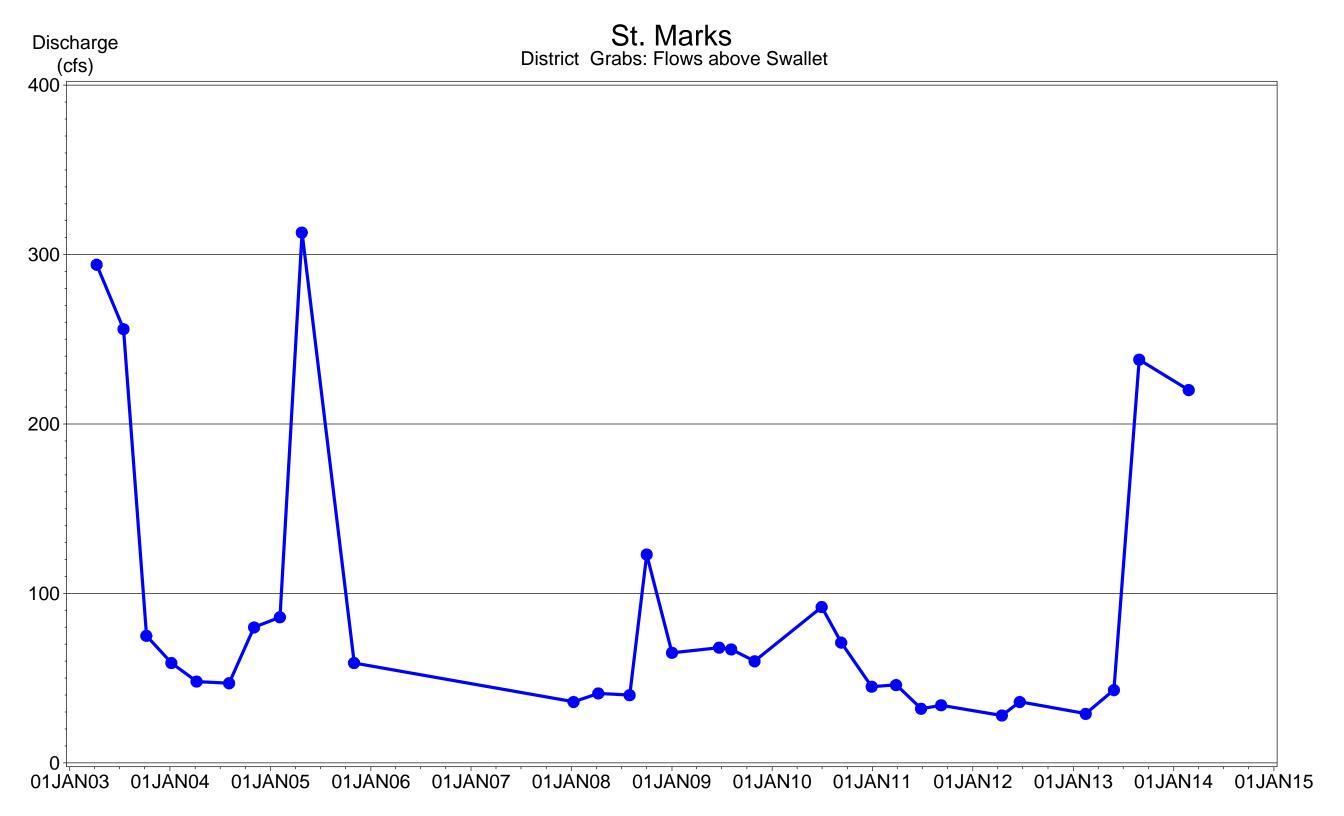


01JAN60 01JAN65 01JAN70 01JAN75 01JAN80 01JAN85 01JAN90 01JAN95 01JAN00 01JAN05 01JAN10 01JAN15 01JAN20

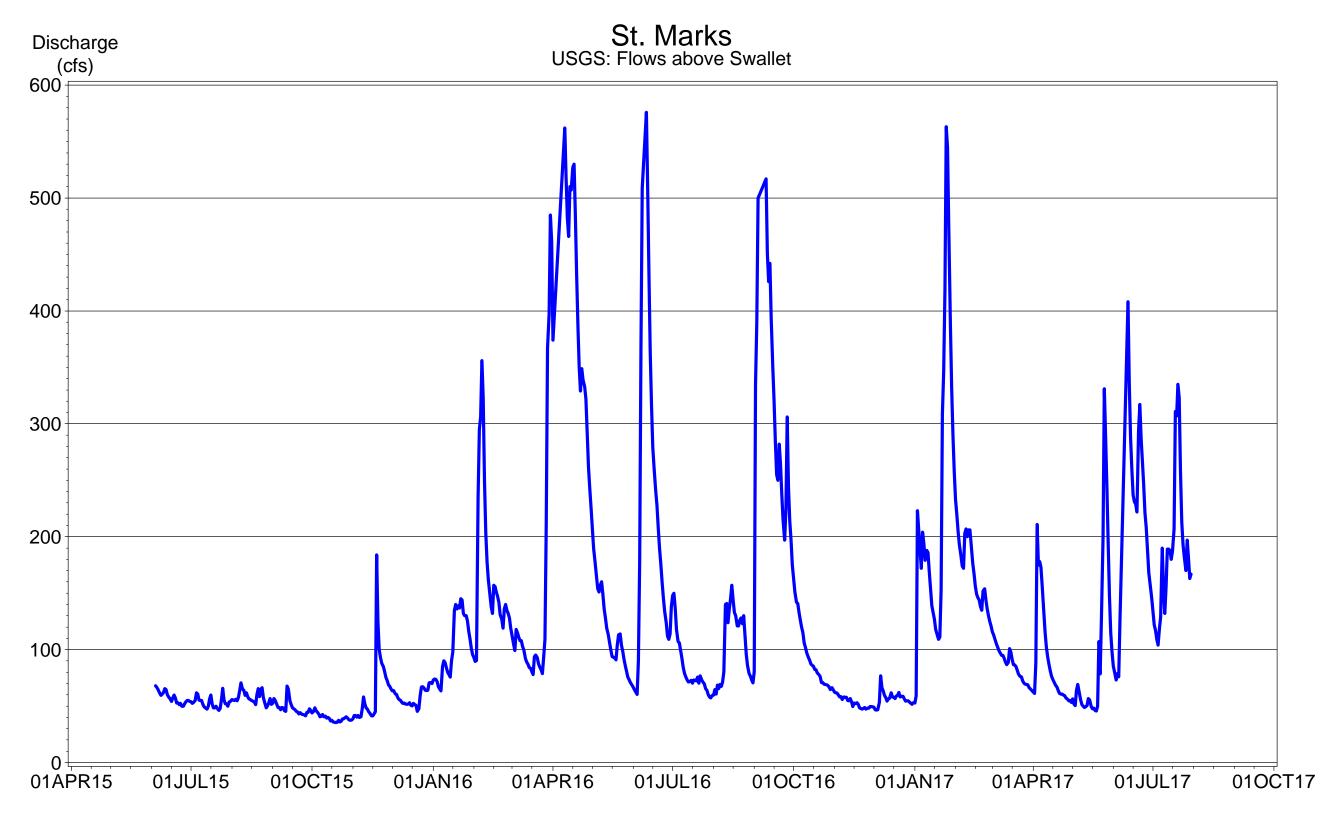


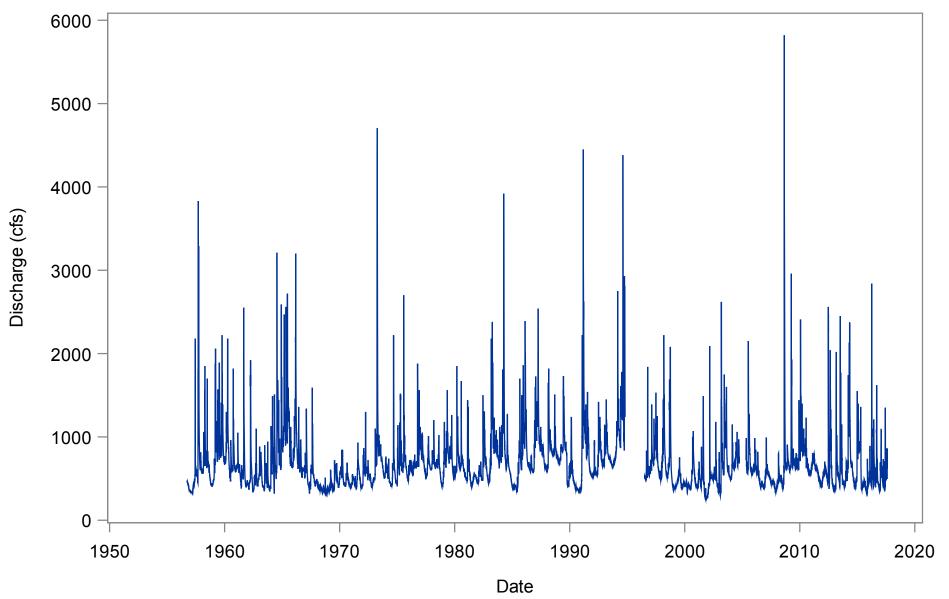



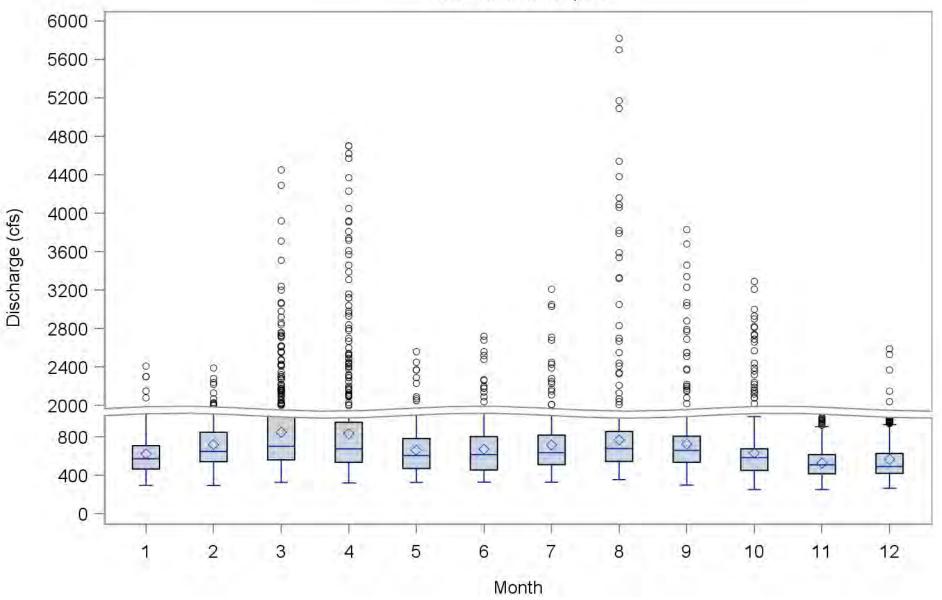










# ATTACHMENT 2 STREAMFLOW DESCRIPTIVE STATISTICS AND PLOTS

# Flow Timeseries Site=StMarksNewport



# Seasonal Boxplots of Discharge (cfs) Site=StMarksNewport



# Beginning and End Dates for Discharge Stations

| Obs | site           | _TYPE_ | _FREQ_ | mindate    | maxdate    |
|-----|----------------|--------|--------|------------|------------|
| 1   | StMarksNewport | 0      | 22229  | 10/01/1956 | 08/10/2017 |

## Check for Data Gaps in Discharge Timeseries

#### Site=StMarksNewport

|      |    |    |    |    |    | mo | nth |    |    |    |    |    |
|------|----|----|----|----|----|----|-----|----|----|----|----|----|
|      | 1  | 2  | 3  | 4  | 5  | 6  | 7   | 8  | 9  | 10 | 11 | 12 |
| year |    |    |    |    |    |    |     |    |    |    |    |    |
| 1956 |    |    |    |    |    |    |     |    |    | 31 | 30 | 31 |
| 1957 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1958 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1959 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1960 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1961 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1962 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1963 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1964 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1965 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1966 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1967 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1968 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1969 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1970 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1971 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1972 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1973 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1974 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1975 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1976 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1977 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1978 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1979 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |

(Continued)

## Check for Data Gaps in Discharge Timeseries

#### Site=StMarksNewport

|      |    |    |    |    |    | mo | nth |    |    |    |    |    |
|------|----|----|----|----|----|----|-----|----|----|----|----|----|
|      | 1  | 2  | 3  | 4  | 5  | 6  | 7   | 8  | 9  | 10 | 11 | 12 |
| year |    |    |    |    |    |    |     |    |    |    |    |    |
| 1980 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1981 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1982 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1983 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1984 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1985 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1986 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1987 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1988 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1989 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1990 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1991 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1992 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1993 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1994 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 25 | 0  | 0  |
| 1995 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1996 | 0  | 0  | 0  | 0  | 0  | 0  | 31  | 31 | 30 | 31 | 30 | 31 |
| 1997 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1998 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1999 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2000 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2001 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2002 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2003 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |

(Continued)

## Check for Data Gaps in Discharge Timeseries

#### Site=StMarksNewport

|      |    |    |    |    |    | mo | nth |    |    |    |    |    |
|------|----|----|----|----|----|----|-----|----|----|----|----|----|
|      | 1  | 2  | 3  | 4  | 5  | 6  | 7   | 8  | 9  | 10 | 11 | 12 |
| year |    |    |    |    |    |    |     |    |    |    |    |    |
| 2004 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 29 | 0  | 0  | 0  |
| 2005 | 0  | 0  | 0  | 1  | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2006 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2007 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2008 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2009 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2010 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2011 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2012 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2013 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2014 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2015 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2016 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2017 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 10 |    |    |    |    |

#### The UNIVARIATE Procedure Variable: qcfs (Discharge (cfs))

#### Site=StMarksNewport

| Moments         |            |                  |            |  |  |  |  |  |
|-----------------|------------|------------------|------------|--|--|--|--|--|
| N               | 21403      | Sum Weights      | 21403      |  |  |  |  |  |
| Mean            | 690.059992 | Sum Observations | 14769354   |  |  |  |  |  |
| Std Deviation   | 355.188876 | Variance         | 126159.138 |  |  |  |  |  |
| Skewness        | 3.68157328 | Kurtosis         | 24.9388311 |  |  |  |  |  |
| Uncorrected SS  | 1.28918E10 | Corrected SS     | 2700057871 |  |  |  |  |  |
| Coeff Variation | 51.4721736 | Std Error Mean   | 2.427851   |  |  |  |  |  |

|        | Basic Statistical Measures |                     |           |  |  |  |  |  |  |
|--------|----------------------------|---------------------|-----------|--|--|--|--|--|--|
| Loc    | ation                      | Variability         | ,         |  |  |  |  |  |  |
| Mean   | 690.0600                   | Std Deviation       | 355.18888 |  |  |  |  |  |  |
| Median | 611.0000                   | Variance            | 126159    |  |  |  |  |  |  |
| Mode   | 415.0000                   | Range               | 5569      |  |  |  |  |  |  |
|        |                            | Interquartile Range | 309.00000 |  |  |  |  |  |  |

Note: The mode displayed is the smallest of 2 modes with a count of 120.

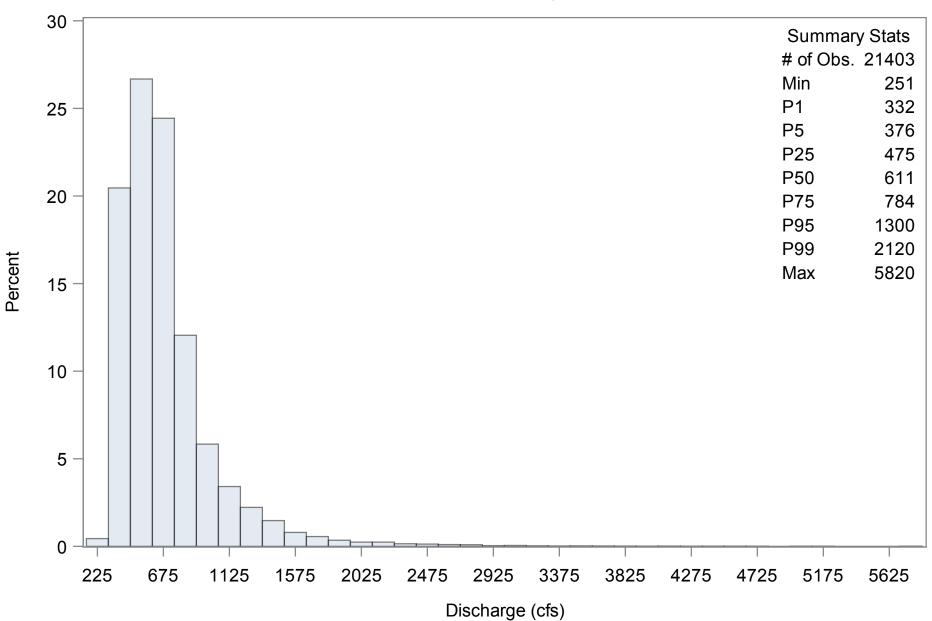
| Tests for Location: Mu0=0 |    |          |          |        |  |  |  |
|---------------------------|----|----------|----------|--------|--|--|--|
| Test                      | St | atistic  | p Value  |        |  |  |  |
| Student's t               | t  | 284.2267 | Pr >  t  | <.0001 |  |  |  |
| Sign                      | м  | 10701.5  | Pr >=  M | <.0001 |  |  |  |
| Signed Rank               | s  | 1.1453E8 | Pr >=  S | <.0001 |  |  |  |

#### The UNIVARIATE Procedure Variable: qcfs (Discharge (cfs))

#### Site=StMarksNewport

| Quantiles (E | Quantiles (Definition 5) |  |  |  |  |  |  |
|--------------|--------------------------|--|--|--|--|--|--|
| Level        | Quantile                 |  |  |  |  |  |  |
| 100% Max     | 5820                     |  |  |  |  |  |  |
| 99%          | 2120                     |  |  |  |  |  |  |
| 95%          | 1300                     |  |  |  |  |  |  |
| 90%          | 1050                     |  |  |  |  |  |  |
| 75% Q3       | 784                      |  |  |  |  |  |  |
| 50% Median   | 611                      |  |  |  |  |  |  |
| 25% Q1       | 475                      |  |  |  |  |  |  |
| 10%          | 403                      |  |  |  |  |  |  |
| 5%           | 376                      |  |  |  |  |  |  |
| 1%           | 332                      |  |  |  |  |  |  |
| 0% Min       | 251                      |  |  |  |  |  |  |

| Ex    | Extreme Observations |       |       |  |  |  |  |  |
|-------|----------------------|-------|-------|--|--|--|--|--|
| Lov   | vest                 | Higl  | hest  |  |  |  |  |  |
| Value | Obs                  | Value | Obs   |  |  |  |  |  |
| 251   | 16486                | 4700  | 6033  |  |  |  |  |  |
| 251   | 16485                | 5090  | 18956 |  |  |  |  |  |
| 251   | 16459                | 5170  | 18959 |  |  |  |  |  |
| 252   | 16484                | 5700  | 18958 |  |  |  |  |  |
| 252   | 16458                | 5820  | 18957 |  |  |  |  |  |

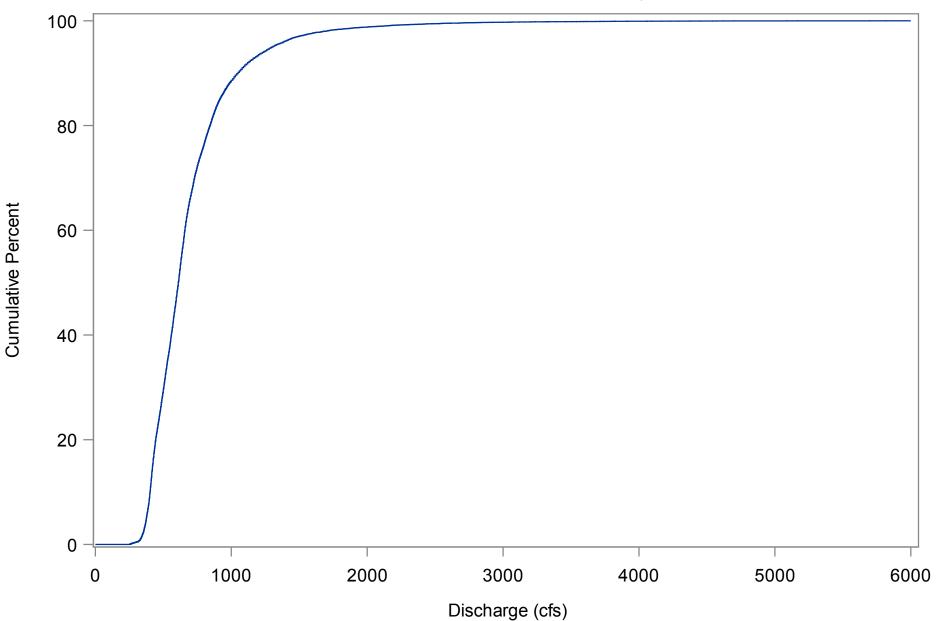

#### The UNIVARIATE Procedure Variable: qcfs (Discharge (cfs))

#### Site=StMarksNewport

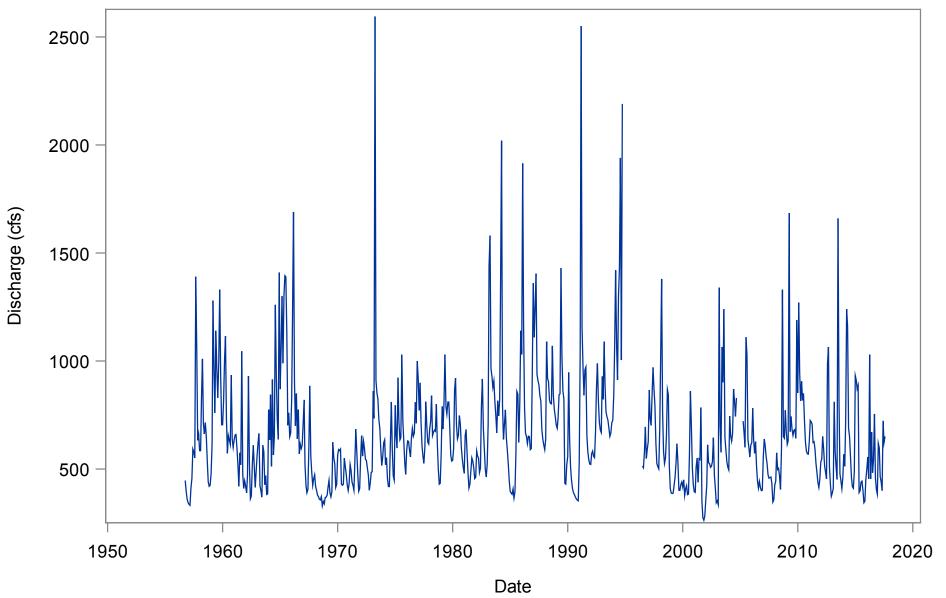
|                  | Missing Values |             |        |  |  |  |  |  |
|------------------|----------------|-------------|--------|--|--|--|--|--|
|                  |                | Percent Of  |        |  |  |  |  |  |
| Missing<br>Value | Count          | All Obs Obs |        |  |  |  |  |  |
|                  | 826            | 3.72        | 100.00 |  |  |  |  |  |

#### The UNIVARIATE Procedure

#### Site=StMarksNewport




# Distribution of qcfs


The UNIVARIATE Procedure

Site=StMarksNewport

Cumulative Distribution Function for qcfs



# Monthly Flow Timeseries Site=StMarksNewport



# StMarksNewport Discharge Trends Autocorrelation Statistics

| Lagged<br>Precipitation<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|-------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                   | 1.000       | 0.037             | 0.074          | -0.074         |
| 1                                   | 0.576       | 0.064             | 0.128          | -0.128         |
| 2                                   | 0.398       | 0.071             | 0.142          | -0.142         |
| 3                                   | 0.279       | 0.074             | 0.148          | -0.148         |
| 4                                   | 0.224       | 0.075             | 0.150          | -0.150         |
| 5                                   | 0.188       | 0.076             | 0.152          | -0.152         |
| 6                                   | 0.162       | 0.077             | 0.154          | -0.154         |
| 7                                   | 0.170       | 0.077             | 0.154          | -0.154         |
| 8                                   | 0.111       | 0.078             | 0.155          | -0.155         |
| 9                                   | 0.097       | 0.078             | 0.156          | -0.156         |
| 10                                  | 0.127       | 0.078             | 0.156          | -0.156         |
| 11                                  | 0.158       | 0.078             | 0.157          | -0.157         |
| 12                                  | 0.173       | 0.079             | 0.158          | -0.158         |
| 13                                  | 0.129       | 0.079             | 0.159          | -0.159         |
| 14                                  | 0.073       | 0.080             | 0.159          | -0.159         |
| 15                                  | 0.052       | 0.080             | 0.159          | -0.159         |

#### Correlogram 1.0 0.8 0.6 0.4 0.2 U U U U U U 0.0 L -0.2 L L L L L L L L L Τ. τ. Τ. -0.4 -0.6 -0.8 -1.0 8 5 10 2 3 4 6 9 11 12 13 14 7 15 1 0 Lagged Precipitation (inches) U=Upper 95% Confidence Limit L=Lower 95% Confidence Limit Zero Reference Line Shown

StMarksNewport Discharge Trends

Correlation

# ATTACHMENT 3 EVAPOTRANSPIRATION DESCRIPTIVE STATISTICS AND PLOTS

# Beginning and End Dates for Evapotranspiration Station

| Obs | station    | _TYPE_ | _FREQ_ | mindate    | maxdate    |
|-----|------------|--------|--------|------------|------------|
| 1   | Monticello | 0      | 5241   | 04/23/2003 | 08/30/2017 |

## Check for Data Gaps in ET Timeseries

#### Station=Monticello

|      | month |    |    |    |    |    |    |    |    |    |    |    |
|------|-------|----|----|----|----|----|----|----|----|----|----|----|
|      | 1     | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
| year |       |    |    |    |    |    |    |    |    |    |    |    |
| 2003 |       |    |    | 8  | 30 | 30 | 11 | 29 | 25 | 28 | 27 | 22 |
| 2004 | 2     | 21 | 0  | 4  | 28 | 1  | 2  | 1  | 0  | 0  | 0  | 0  |
| 2005 | 0     | 0  | 0  | 0  | 0  | 20 | 31 | 26 | 29 | 29 | 30 | 30 |
| 2006 | 29    | 27 | 21 | 29 | 30 | 27 | 31 | 30 | 30 | 28 | 28 | 31 |
| 2007 | 30    | 28 | 31 | 30 | 31 | 26 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2008 | 30    | 26 | 28 | 28 | 30 | 29 | 28 | 28 | 29 | 30 | 30 | 30 |
| 2009 | 29    | 21 | 30 | 29 | 31 | 29 | 31 | 31 | 29 | 31 | 30 | 31 |
| 2010 | 31    | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2011 | 31    | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2012 | 31    | 29 | 31 | 30 | 26 | 29 | 30 | 30 | 29 | 31 | 30 | 30 |
| 2013 | 30    | 28 | 31 | 30 | 31 | 30 | 31 | 28 | 26 | 30 | 30 | 31 |
| 2014 | 31    | 28 | 31 | 30 | 31 | 30 | 28 | 31 | 30 | 31 | 30 | 31 |
| 2015 | 31    | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2016 | 31    | 29 | 31 | 30 | 31 | 30 | 31 | 31 | 28 | 31 | 30 | 31 |
| 2017 | 30    | 28 | 31 | 30 | 31 | 30 | 31 | 30 |    |    |    |    |

## Descriptive Statistics for Daily Northwest Evapotranspiration

#### The UNIVARIATE Procedure Variable: etin (Evapotransipation (inches))

| Moments         |            |                  |            |  |  |  |  |  |  |  |
|-----------------|------------|------------------|------------|--|--|--|--|--|--|--|
| N               | 4637       | 4637 Sum Weights |            |  |  |  |  |  |  |  |
| Mean            | 0.10978434 | Sum Observations | 509.07     |  |  |  |  |  |  |  |
| Std Deviation   | 0.04998918 | Variance         | 0.00249892 |  |  |  |  |  |  |  |
| Skewness        | 0.23341377 | Kurtosis         | -1.1723976 |  |  |  |  |  |  |  |
| Uncorrected SS  | 67.4729    | Corrected SS     | 11.5849843 |  |  |  |  |  |  |  |
| Coeff Variation | 45.5339791 | Std Error Mean   | 0.0007341  |  |  |  |  |  |  |  |

| Basic Statistical Measures |          |                     |         |  |  |  |  |  |  |
|----------------------------|----------|---------------------|---------|--|--|--|--|--|--|
| Loc                        | ation    | Variability         |         |  |  |  |  |  |  |
| Mean                       | 0.109784 | Std Deviation       | 0.04999 |  |  |  |  |  |  |
| Median                     | 0.100000 | Variance            | 0.00250 |  |  |  |  |  |  |
| Mode                       | 0.060000 | Range               | 0.21000 |  |  |  |  |  |  |
|                            |          | Interquartile Range | 0.09000 |  |  |  |  |  |  |

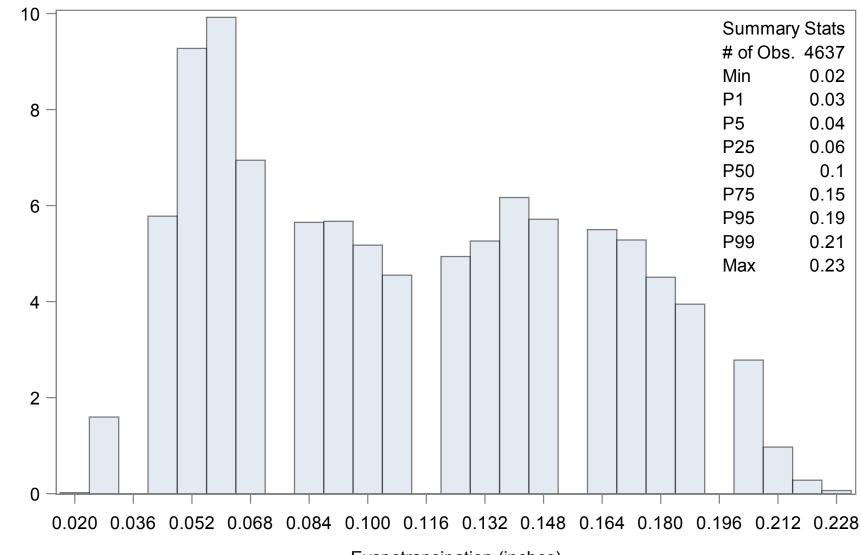
| Tests for Location: Mu0=0 |    |          |          |        |  |  |  |  |  |  |  |
|---------------------------|----|----------|----------|--------|--|--|--|--|--|--|--|
| Test                      | St | atistic  | p Value  |        |  |  |  |  |  |  |  |
| Student's t               | t  | 149.5488 | Pr >  t  | <.0001 |  |  |  |  |  |  |  |
| Sign                      | м  | 2318.5   | Pr >=  M | <.0001 |  |  |  |  |  |  |  |
| Signed Rank               | s  | 5376602  | Pr >=  S | <.0001 |  |  |  |  |  |  |  |

## Descriptive Statistics for Daily Northwest Evapotranspiration

#### The UNIVARIATE Procedure Variable: etin (Evapotransipation (inches))

| Quantiles (E | Quantiles (Definition 5) |  |  |  |  |  |  |  |  |  |
|--------------|--------------------------|--|--|--|--|--|--|--|--|--|
| Level        | Quantile                 |  |  |  |  |  |  |  |  |  |
| 100% Max     | 0.23                     |  |  |  |  |  |  |  |  |  |
| 99%          | 0.21                     |  |  |  |  |  |  |  |  |  |
| 95%          | 0.19                     |  |  |  |  |  |  |  |  |  |
| 90%          | 0.18                     |  |  |  |  |  |  |  |  |  |
| 75% Q3       | 0.15                     |  |  |  |  |  |  |  |  |  |
| 50% Median   | 0.10                     |  |  |  |  |  |  |  |  |  |
| 25% Q1       | 0.06                     |  |  |  |  |  |  |  |  |  |
| 10%          | 0.05                     |  |  |  |  |  |  |  |  |  |
| 5%           | 0.04                     |  |  |  |  |  |  |  |  |  |
| 1%           | 0.03                     |  |  |  |  |  |  |  |  |  |
| 0% Min       | 0.02                     |  |  |  |  |  |  |  |  |  |

| Exti  | Extreme Observations |         |      |  |  |  |  |  |  |  |  |
|-------|----------------------|---------|------|--|--|--|--|--|--|--|--|
| Low   | est                  | Highest |      |  |  |  |  |  |  |  |  |
| Value | Obs                  | Value   | Obs  |  |  |  |  |  |  |  |  |
| 0.02  | 3910                 | 0.22    | 2982 |  |  |  |  |  |  |  |  |
| 0.03  | 5008                 | 0.22    | 4435 |  |  |  |  |  |  |  |  |
| 0.03  | 5007                 | 0.23    | 2252 |  |  |  |  |  |  |  |  |
| 0.03  | 4978                 | 0.23    | 2974 |  |  |  |  |  |  |  |  |
| 0.03  | 4977                 | 0.23    | 2975 |  |  |  |  |  |  |  |  |

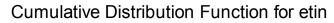

## Descriptive Statistics for Daily Northwest Evapotranspiration

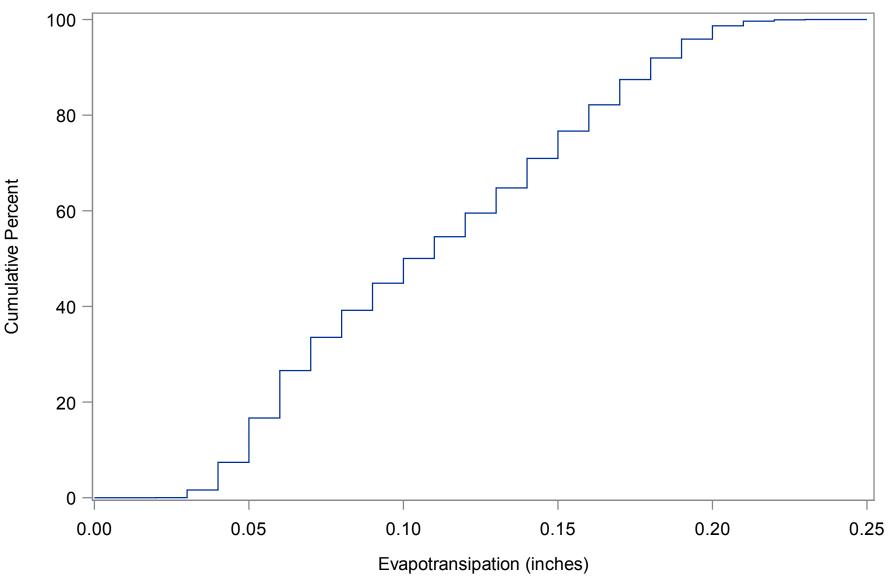
#### The UNIVARIATE Procedure Variable: etin (Evapotransipation (inches))

| Missing Values   |       |            |                |  |  |  |  |  |  |  |
|------------------|-------|------------|----------------|--|--|--|--|--|--|--|
|                  |       | Percent Of |                |  |  |  |  |  |  |  |
| Missing<br>Value | Count | All Obs    | Missing<br>Obs |  |  |  |  |  |  |  |
|                  | 604   | 11.52      | 100.00         |  |  |  |  |  |  |  |

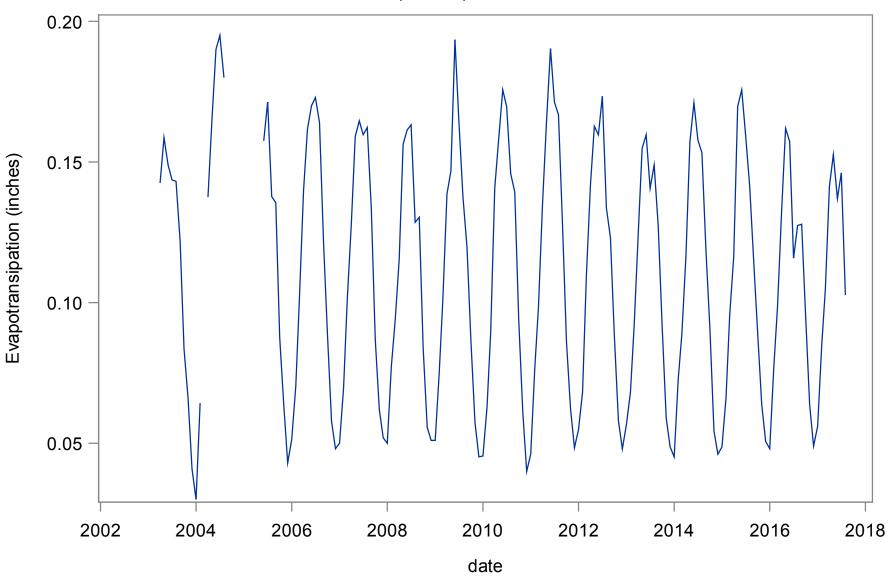
#### The UNIVARIATE Procedure

#### Station=Monticello

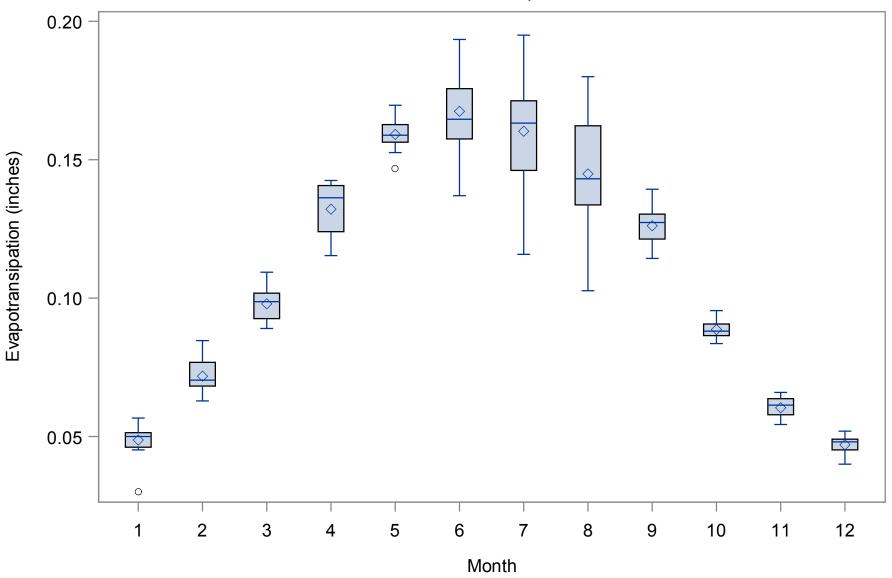




Percent

## Distribution of etin


Evapotransipation (inches)

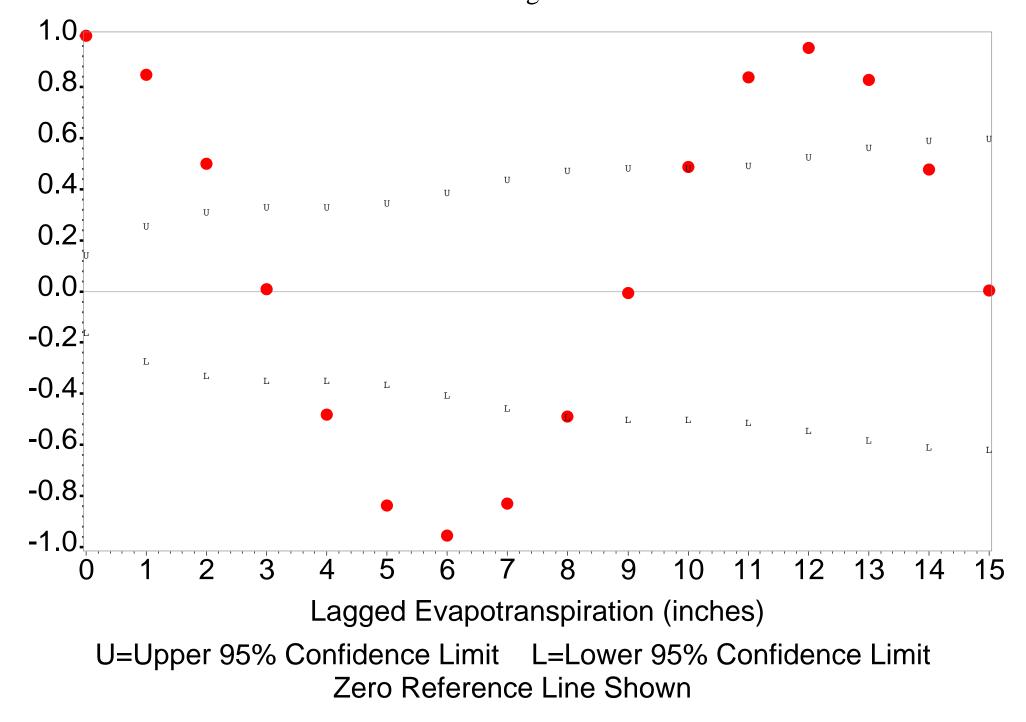
#### The UNIVARIATE Procedure





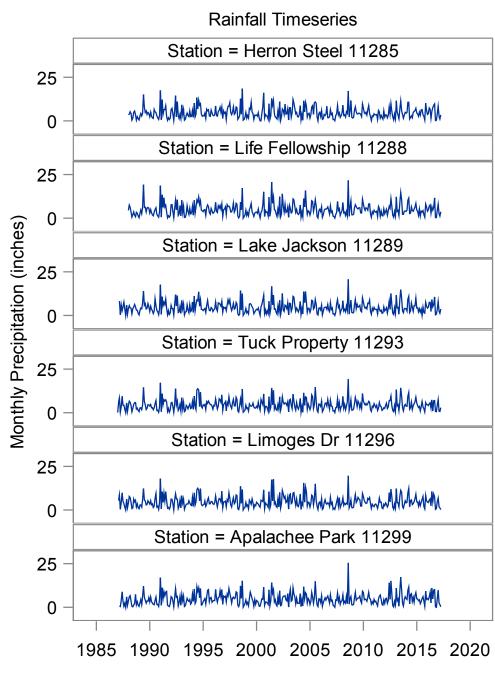

Evapotransipation Timeseries



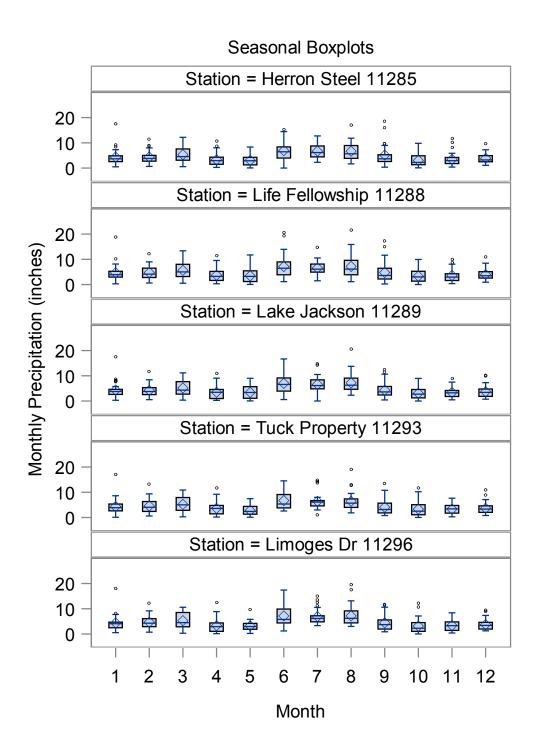

Seasonal Boxplots



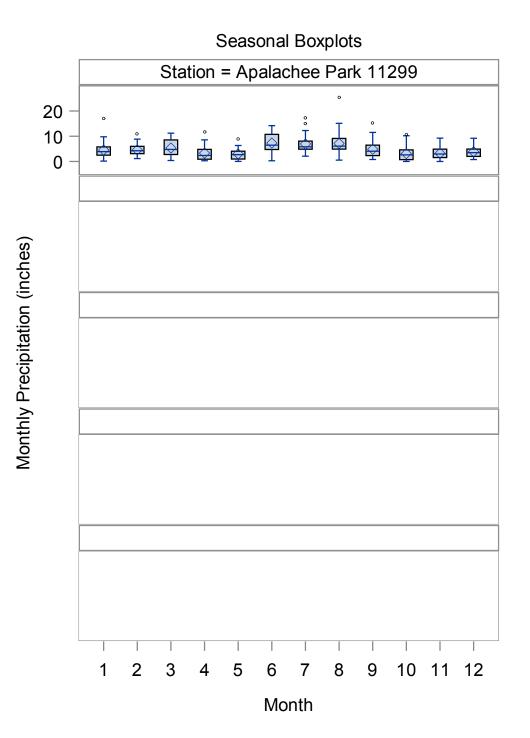
## Monticello Evapotranspiration Trends Autocorrelation Statistics


| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.076             | 0.152          | -0.152         |
| 1                                        | 0.846       | 0.132             | 0.263          | -0.263         |
| 2                                        | 0.499       | 0.160             | 0.320          | -0.320         |
| 3                                        | 0.010       | 0.169             | 0.338          | -0.338         |
| 4                                        | -0.482      | 0.169             | 0.338          | -0.338         |
| 5                                        | -0.837      | 0.177             | 0.353          | -0.353         |
| 6                                        | -0.955      | 0.198             | 0.396          | -0.396         |
| 7                                        | -0.829      | 0.223             | 0.446          | -0.446         |
| 8                                        | -0.489      | 0.240             | 0.481          | -0.481         |
| 9                                        | -0.005      | 0.246             | 0.492          | -0.492         |
| 10                                       | 0.486       | 0.246             | 0.492          | -0.492         |
| 11                                       | 0.837       | 0.252             | 0.503          | -0.503         |
| 12                                       | 0.951       | 0.267             | 0.534          | -0.534         |
| 13                                       | 0.827       | 0.286             | 0.572          | -0.572         |
| 14                                       | 0.476       | 0.300             | 0.599          | -0.599         |
| 15                                       | 0.003       | 0.304             | 0.608          | -0.608         |

# Monticello Evapotranspiration Trends Correlogram




## Correlation


# ATTACHMENT 4 DISTRICT RAINFALL DESCRIPTIVE STATISTICS AND PLOTS



Date



Seasonal Boxplots



## Beginning and End Dates for Rainfall Stations

| Obs | station               | Nobs | mindate    | maxdate    |
|-----|-----------------------|------|------------|------------|
| 1   | Herron Steel 11285    | 352  | 01/01/1988 | 04/01/2017 |
| 2   | Life Fellowship 11288 | 352  | 01/01/1988 | 04/01/2017 |
| 3   | Lake Jackson 11289    | 362  | 03/01/1987 | 04/01/2017 |
| 4   | Tuck Property 11293   | 364  | 01/01/1987 | 04/01/2017 |
| 5   | Limoges Dr 11296      | 363  | 02/01/1987 | 04/01/2017 |
| 6   | Apalachee Park 11299  | 361  | 03/01/1987 | 04/01/2017 |

#### Station=Herron Steel 11285

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 1988 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1989 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1990 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1991 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1992 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1993 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1994 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1995 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1996 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1997 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1998 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1999 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2000 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2001 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2002 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2003 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2004 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2005 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2006 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2007 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2008 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2009 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

(Continued)

#### Station=Herron Steel 11285

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 2010 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2012 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2017 | 1     | 1 | 1 | 1 |   |   |   |   |   |    |    |    |

#### Station=Life Fellowship 11288

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 1988 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1989 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1990 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1991 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1992 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1993 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1994 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1995 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1996 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1997 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1998 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1999 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2000 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2001 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2002 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2003 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2004 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2005 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2006 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2007 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2008 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2009 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

(Continued)

#### Station=Life Fellowship 11288

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 2010 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2012 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2017 | 1     | 1 | 1 | 1 |   |   |   |   |   |    |    |    |

#### Station=Lake Jackson 11289

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 1987 |       |   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1988 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1989 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1990 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1991 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1992 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1993 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1994 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1995 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1996 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1997 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1998 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1999 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2000 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2001 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2002 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2003 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2004 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2005 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2006 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2007 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2008 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

(Continued)

#### Station=Lake Jackson 11289

|      |   | month |   |   |   |   |   |   |   |    |    |    |
|------|---|-------|---|---|---|---|---|---|---|----|----|----|
|      | 1 | 2     | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |   |       |   |   |   |   |   |   |   |    |    |    |
| 2009 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2010 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2012 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2017 | 1 | 1     | 1 | 1 |   |   |   |   |   |    |    |    |

#### Station=Tuck Property 11293

|      |   | month |   |   |   |   |   |   |   |    |    |    |
|------|---|-------|---|---|---|---|---|---|---|----|----|----|
|      | 1 | 2     | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |   |       |   |   |   |   |   |   |   |    |    |    |
| 1987 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1988 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1989 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1990 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1991 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1992 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1993 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1994 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1995 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1996 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1997 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1998 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1999 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2000 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2001 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2002 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2003 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2004 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2005 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2006 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2007 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2008 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

(Continued)

#### Station=Tuck Property 11293

|      |   | month |   |   |   |   |   |   |   |    |    |    |
|------|---|-------|---|---|---|---|---|---|---|----|----|----|
|      | 1 | 2     | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |   |       |   |   |   |   |   |   |   |    |    |    |
| 2009 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2010 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2012 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2017 | 1 | 1     | 1 | 1 |   |   |   |   |   |    |    |    |

#### Station=Limoges Dr 11296

|      |   | month |   |   |   |   |   |   |   |    |    |    |
|------|---|-------|---|---|---|---|---|---|---|----|----|----|
|      | 1 | 2     | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |   |       |   |   |   |   |   |   |   |    |    |    |
| 1987 |   | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1988 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1989 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1990 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1991 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1992 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1993 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1994 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1995 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1996 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1997 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1998 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1999 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2000 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2001 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2002 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2003 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2004 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2005 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2006 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2007 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2008 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

(Continued)

#### Station=Limoges Dr 11296

|      |   | month |   |   |   |   |   |   |   |    |    |    |
|------|---|-------|---|---|---|---|---|---|---|----|----|----|
|      | 1 | 2     | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |   |       |   |   |   |   |   |   |   |    |    |    |
| 2009 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2010 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2012 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2017 | 1 | 1     | 1 | 1 |   |   |   |   |   |    |    |    |

#### Station=Apalachee Park 11299

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 1987 |       |   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1988 | 1     | 1 | 1 | 1 | 1 | 1 |   | 1 | 1 | 1  | 1  | 1  |
| 1989 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1990 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1991 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1992 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1993 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1994 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1995 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1996 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1997 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1998 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1999 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2000 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2001 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2002 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2003 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2004 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2005 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2006 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2007 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2008 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

(Continued)

#### Station=Apalachee Park 11299

|      |   | month |   |   |   |   |   |   |   |    |    |    |
|------|---|-------|---|---|---|---|---|---|---|----|----|----|
|      | 1 | 2     | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |   |       |   |   |   |   |   |   |   |    |    |    |
| 2009 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2010 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2012 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2017 | 1 | 1     | 1 | 1 |   |   |   |   |   |    |    |    |

#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

#### Station=Herron Steel 11285

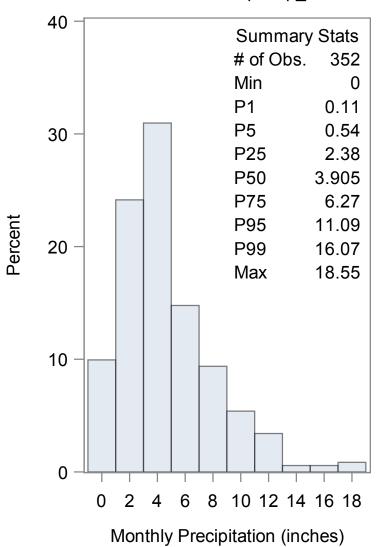
| Moments         |            |                  |            |  |  |  |  |  |  |
|-----------------|------------|------------------|------------|--|--|--|--|--|--|
| N               | 352        | Sum Weights      | 352        |  |  |  |  |  |  |
| Mean            | 4.68877841 | Sum Observations | 1650.45    |  |  |  |  |  |  |
| Std Deviation   | 3.31708062 | Variance         | 11.0030239 |  |  |  |  |  |  |
| Skewness        | 1.23398439 | Kurtosis         | 1.80504554 |  |  |  |  |  |  |
| Uncorrected SS  | 11600.6557 | Corrected SS     | 3862.06137 |  |  |  |  |  |  |
| Coeff Variation | 70.7450925 | Std Error Mean   | 0.17680099 |  |  |  |  |  |  |

|        | Basic Statistical Measures |                     |          |  |  |  |  |  |  |  |
|--------|----------------------------|---------------------|----------|--|--|--|--|--|--|--|
| Loc    | Location Variability       |                     |          |  |  |  |  |  |  |  |
| Mean   | 4.688778                   | Std Deviation       | 3.31708  |  |  |  |  |  |  |  |
| Median | 3.905000                   | Variance            | 11.00302 |  |  |  |  |  |  |  |
| Mode   | 0.390000                   | Range               | 18.55000 |  |  |  |  |  |  |  |
|        |                            | Interquartile Range | 3.89000  |  |  |  |  |  |  |  |

Note: The mode displayed is the smallest of 3 modes with a count of 2.

| Tests for Location: Mu0=0 |                   |          |          |        |  |  |  |  |
|---------------------------|-------------------|----------|----------|--------|--|--|--|--|
| Test                      | Statistic p Value |          |          |        |  |  |  |  |
| Student's t               | t                 | 26.52009 | Pr >  t  | <.0001 |  |  |  |  |
| Sign                      | м                 | 175.5    | Pr >=  M | <.0001 |  |  |  |  |
| Signed Rank               | s                 | 30888    | Pr >=  S | <.0001 |  |  |  |  |

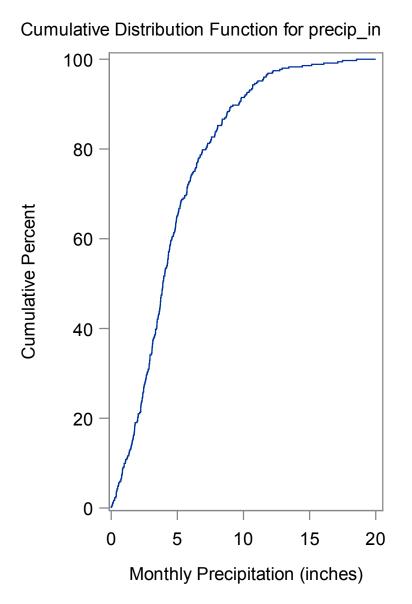
#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))


#### Station=Herron Steel 11285

| Quantiles (Definition 5) |          |  |  |  |  |  |
|--------------------------|----------|--|--|--|--|--|
| Level                    | Quantile |  |  |  |  |  |
| 100% Max                 | 18.550   |  |  |  |  |  |
| 99%                      | 16.070   |  |  |  |  |  |
| 95%                      | 11.090   |  |  |  |  |  |
| 90%                      | 9.640    |  |  |  |  |  |
| 75% Q3                   | 6.270    |  |  |  |  |  |
| 50% Median               | 3.905    |  |  |  |  |  |
| 25% Q1                   | 2.380    |  |  |  |  |  |
| 10%                      | 1.070    |  |  |  |  |  |
| 5%                       | 0.540    |  |  |  |  |  |
| 1%                       | 0.110    |  |  |  |  |  |
| 0% Min                   | 0.000    |  |  |  |  |  |

| Extreme Observations |           |         |     |  |
|----------------------|-----------|---------|-----|--|
| Lowest               |           | Highest |     |  |
| Value                | Value Obs |         | Obs |  |
| 0.00                 | 150       | 15.16   | 18  |  |
| 0.05                 | 149       | 16.07   | 153 |  |
| 0.09                 | 214       | 17.13   | 248 |  |
| 0.11                 | 233       | 17.49   | 37  |  |
| 0.16                 | 274       | 18.55   | 129 |  |

#### The UNIVARIATE Procedure


Station=Herron Steel 11285



Distribution of precip\_in

#### The UNIVARIATE Procedure

Station=Herron Steel 11285



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

#### Station=Life Fellowship 11288

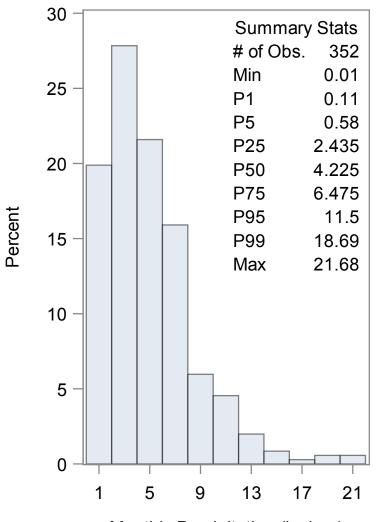
| Moments         |            |                  |            |  |
|-----------------|------------|------------------|------------|--|
| N               | 352        | Sum Weights      | 352        |  |
| Mean            | 4.89767045 | Sum Observations | 1723.98    |  |
| Std Deviation   | 3.52770972 | Variance         | 12.4447359 |  |
| Skewness        | 1.49706414 | Kurtosis         | 3.50708956 |  |
| Uncorrected SS  | 12811.5882 | Corrected SS     | 4368.10229 |  |
| Coeff Variation | 72.0283195 | Std Error Mean   | 0.18802756 |  |

| Basic Statistical Measures |          |                     |          |  |
|----------------------------|----------|---------------------|----------|--|
| Location                   |          | Variability         |          |  |
| Mean                       | 4.897670 | Std Deviation       | 3.52771  |  |
| Median                     | 4.225000 | Variance            | 12.44474 |  |
| Mode                       | 0.510000 | Range               | 21.67000 |  |
|                            |          | Interquartile Range | 4.04000  |  |

Note: The mode displayed is the smallest of 3 modes with a count of 2.

| Tests for Location: Mu0=0 |    |          |          |        |  |
|---------------------------|----|----------|----------|--------|--|
| Test                      | St | atistic  | p Value  |        |  |
| Student's t               | t  | 26.04762 | Pr >  t  | <.0001 |  |
| Sign                      | м  | 176      | Pr >=  M | <.0001 |  |
| Signed Rank               | s  | 31064    | Pr >=  S | <.0001 |  |

#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

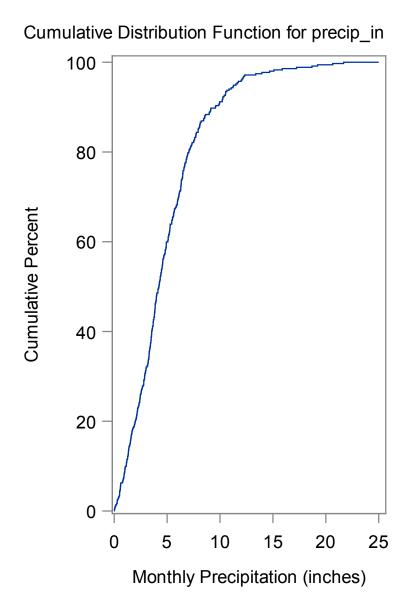

#### Station=Life Fellowship 11288

| Quantiles (Definition 5) |          |  |  |
|--------------------------|----------|--|--|
| Level                    | Quantile |  |  |
| 100% Max                 | 21.680   |  |  |
| 99%                      | 18.690   |  |  |
| 95%                      | 11.500   |  |  |
| 90%                      | 9.550    |  |  |
| 75% Q3                   | 6.475    |  |  |
| 50% Median               | 4.225    |  |  |
| 25% Q1                   | 2.435    |  |  |
| 10%                      | 1.140    |  |  |
| 5%                       | 0.580    |  |  |
| 1%                       | 0.110    |  |  |
| <b>0% Min</b> 0.01       |          |  |  |

| Extreme Observations |     |         |     |  |
|----------------------|-----|---------|-----|--|
| Lowest               |     | Highest |     |  |
| Value Obs            |     | Value   | Obs |  |
| 0.01                 | 482 | 17.23   | 481 |  |
| 0.04                 | 585 | 18.69   | 389 |  |
| 0.06                 | 566 | 19.22   | 370 |  |
| 0.11                 | 501 | 20.65   | 514 |  |
| 0.16                 | 477 | 21.68   | 600 |  |

#### The UNIVARIATE Procedure

Station=Life Fellowship 11288




Distribution of precip\_in

Monthly Precipitation (inches)

#### The UNIVARIATE Procedure

Station=Life Fellowship 11288



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

#### Station=Lake Jackson 11289

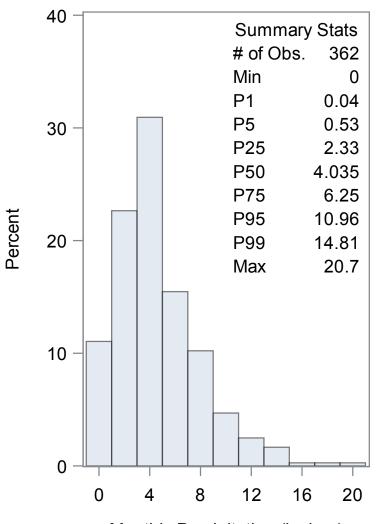
| Moments         |            |                  |            |  |
|-----------------|------------|------------------|------------|--|
| N               | 362        | Sum Weights      | 362        |  |
| Mean            | 4.6593453  | Sum Observations | 1686.683   |  |
| Std Deviation   | 3.28249179 | Variance         | 10.7747523 |  |
| Skewness        | 1.26611185 | Kurtosis         | 2.37896269 |  |
| Uncorrected SS  | 11748.5241 | Corrected SS     | 3889.68559 |  |
| Coeff Variation | 70.4496356 | Std Error Mean   | 0.17252394 |  |

| Basic Statistical Measures |          |                     |          |  |
|----------------------------|----------|---------------------|----------|--|
| Location                   |          | Variability         |          |  |
| Mean                       | 4.659345 | Std Deviation       | 3.28249  |  |
| Median                     | 4.035000 | Variance            | 10.77475 |  |
| Mode                       | 0.260000 | Range               | 20.70000 |  |
|                            |          | Interquartile Range | 3.92000  |  |

Note: The mode displayed is the smallest of 5 modes with a count of 2.

| Tests for Location: Mu0=0 |    |          |          |        |  |
|---------------------------|----|----------|----------|--------|--|
| Test                      | St | atistic  | p Value  |        |  |
| Student's t               | t  | 27.00695 | Pr >  t  | <.0001 |  |
| Sign                      | м  | 180.5    | Pr >=  M | <.0001 |  |
| Signed Rank               | s  | 32670.5  | Pr >=  S | <.0001 |  |

#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

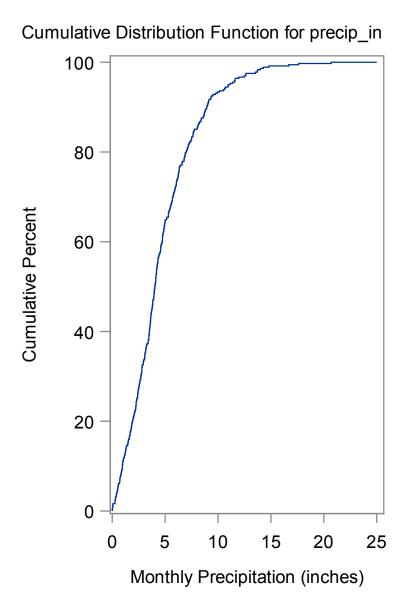

#### Station=Lake Jackson 11289

| Quantiles (Definition 5) |          |  |
|--------------------------|----------|--|
| Level                    | Quantile |  |
| 100% Max                 | 20.700   |  |
| 99%                      | 14.810   |  |
| 95%                      | 10.960   |  |
| 90%                      | 8.930    |  |
| 75% Q3                   | 6.250    |  |
| 50% Median               | 4.035    |  |
| 25% Q1                   | 2.330    |  |
| 10%                      | 0.960    |  |
| 5%                       | 0.530    |  |
| 1%                       | 0.040    |  |
| 0% Min                   | 0.000    |  |

| Extreme Observations |        |       |         |  |  |
|----------------------|--------|-------|---------|--|--|
| Low                  | Lowest |       | Highest |  |  |
| Value Obs            |        | Value | Obs     |  |  |
| 0.00                 | 712    | 14.29 | 841     |  |  |
| 0.01                 | 1045   | 14.81 | 1021    |  |  |
| 0.03                 | 844    | 16.68 | 876     |  |  |
| 0.04                 | 947    | 17.62 | 751     |  |  |
| 0.06                 | 839    | 20.70 | 962     |  |  |

### The UNIVARIATE Procedure

Station=Lake Jackson 11289




Distribution of precip\_in

Monthly Precipitation (inches)

#### The UNIVARIATE Procedure

Station=Lake Jackson 11289



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

#### Station=Tuck Property 11293

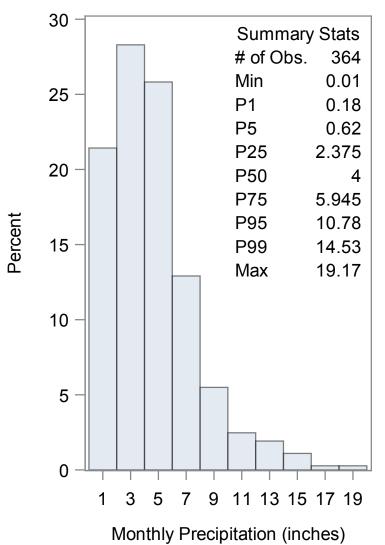
| Moments         |            |                  |            |  |
|-----------------|------------|------------------|------------|--|
| N               | 364        | 364 Sum Weights  |            |  |
| Mean            | 4.54925824 | Sum Observations | 1655.93    |  |
| Std Deviation   | 3.1453311  | Variance         | 9.89310771 |  |
| Skewness        | 1.31499768 | Kurtosis         | 2.43174823 |  |
| Uncorrected SS  | 11124.4513 | Corrected SS     | 3591.1981  |  |
| Coeff Variation | 69.1394274 | Std Error Mean   | 0.16486014 |  |

| Basic Statistical Measures  |                                 |                |          |  |
|-----------------------------|---------------------------------|----------------|----------|--|
| Location Variability        |                                 |                |          |  |
| Mean                        | an 4.549258 Std Deviation 3.145 |                |          |  |
| Median                      | 4.000000                        | 0 Variance 9.8 |          |  |
| Mode                        | 0.320000                        | Range          | 19.16000 |  |
| Interquartile Range 3.57000 |                                 |                |          |  |

Note: The mode displayed is the smallest of 7 modes with a count of 2.

| Tests for Location: Mu0=0 |                   |          |          |        |  |
|---------------------------|-------------------|----------|----------|--------|--|
| Test                      | Statistic p Value |          |          |        |  |
| Student's t               | t                 | 27.59465 | Pr >  t  | <.0001 |  |
| Sign                      | <b>M</b> 182      |          | Pr >=  M | <.0001 |  |
| Signed Rank               | s                 | 33215    | Pr >=  S | <.0001 |  |

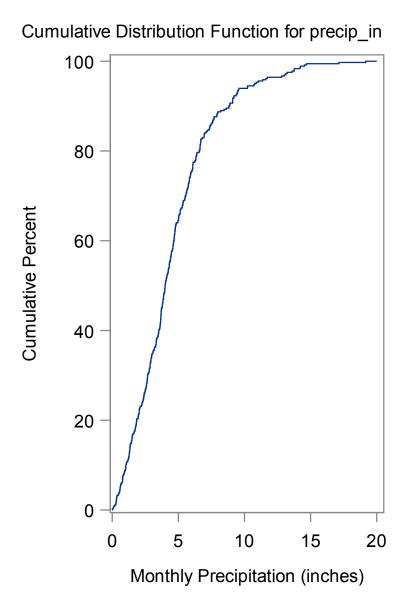
#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))


#### Station=Tuck Property 11293

| Quantiles (Definition 5) |        |  |  |
|--------------------------|--------|--|--|
| Level Quantile           |        |  |  |
| 100% Max                 | 19.170 |  |  |
| 99%                      | 14.530 |  |  |
| 95%                      | 10.780 |  |  |
| 90%                      | 8.830  |  |  |
| 75% Q3                   | 5.945  |  |  |
| 50% Median               | 4.000  |  |  |
| 25% Q1                   | 2.375  |  |  |
| 10%                      | 1.030  |  |  |
| 5%                       | 0.620  |  |  |
| 1%                       | 0.180  |  |  |
| 0% Min                   | 0.010  |  |  |

| Extreme Observations |        |       |         |  |
|----------------------|--------|-------|---------|--|
| Low                  | Lowest |       | Highest |  |
| Value Obs            |        | Value | Obs     |  |
| 0.01                 | 1076   | 14.24 | 1385    |  |
| 0.09                 | 1067   | 14.53 | 1096    |  |
| 0.10                 | 1311   | 14.69 | 1289    |  |
| 0.18                 | 1130   | 17.14 | 1115    |  |
| 0.27                 | 1273   | 19.17 | 1326    |  |

### The UNIVARIATE Procedure


Station=Tuck Property 11293



Distribution of precip\_in

### The UNIVARIATE Procedure

Station=Tuck Property 11293



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

#### Station=Limoges Dr 11296

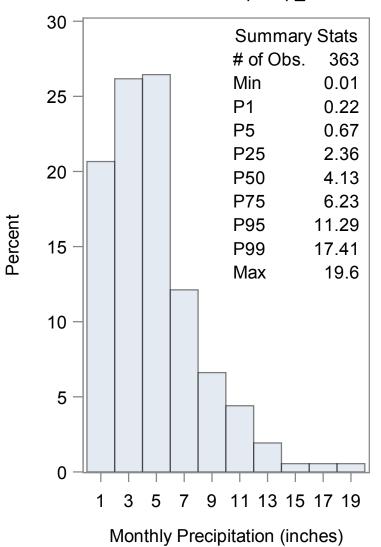
| Moments         |            |                  |            |  |
|-----------------|------------|------------------|------------|--|
| N               | 363        | 363 Sum Weights  |            |  |
| Mean            | 4.73622589 | Sum Observations | 1719.25    |  |
| Std Deviation   | 3.33539396 | Variance         | 11.1248528 |  |
| Skewness        | 1.3266839  | Kurtosis         | 2.37821989 |  |
| Uncorrected SS  | 12169.9531 | Corrected SS     | 4027.19673 |  |
| Coeff Variation | 70.4230337 | Std Error Mean   | 0.17506278 |  |

| Basic Statistical Measures  |                                                            |                   |          |  |
|-----------------------------|------------------------------------------------------------|-------------------|----------|--|
| Location Variability        |                                                            |                   |          |  |
| Mean                        | Mean         4.736226         Std Deviation         3.3353 |                   |          |  |
| Median                      | 4.130000                                                   | 00 Variance 11.12 |          |  |
| Mode                        | 1.070000                                                   | Range             | 19.59000 |  |
| Interquartile Range 3.87000 |                                                            |                   |          |  |

Note: The mode displayed is the smallest of 8 modes with a count of 2.

| Tests for Location: Mu0=0 |                   |          |          |        |  |
|---------------------------|-------------------|----------|----------|--------|--|
| Test                      | Statistic p Value |          |          |        |  |
| Student's t               | t                 | 27.05444 | Pr >  t  | <.0001 |  |
| Sign                      | M 181.5           |          | Pr >=  M | <.0001 |  |
| Signed Rank               | s                 | 33033    | Pr >=  S | <.0001 |  |

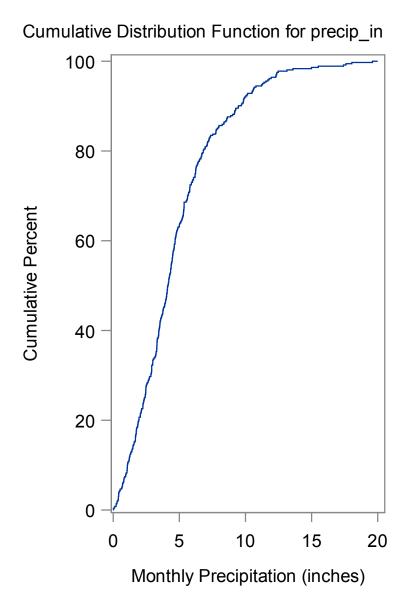
#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))


#### Station=Limoges Dr 11296

| Quantiles (Definition 5) |       |  |  |
|--------------------------|-------|--|--|
| Level Quantile           |       |  |  |
| 100% Max                 | 19.60 |  |  |
| 99%                      | 17.41 |  |  |
| 95%                      | 11.29 |  |  |
| 90%                      | 9.47  |  |  |
| 75% Q3                   | 6.23  |  |  |
| 50% Median               | 4.13  |  |  |
| 25% Q1                   | 2.36  |  |  |
| 10%                      | 1.08  |  |  |
| 5%                       | 0.67  |  |  |
| 1%                       | 0.22  |  |  |
| 0% Min                   | 0.01  |  |  |

| Extreme Observations |        |       |         |  |
|----------------------|--------|-------|---------|--|
| Low                  | Lowest |       | Highest |  |
| Value Obs            |        | Value | Obs     |  |
| 0.01                 | 1439   | 15.51 | 1639    |  |
| 0.06                 | 1571   | 17.41 | 1603    |  |
| 0.12                 | 1493   | 17.60 | 1605    |  |
| 0.22                 | 1793   | 18.04 | 1478    |  |
| 0.22                 | 1566   | 19.60 | 1689    |  |

### The UNIVARIATE Procedure


Station=Limoges Dr 11296



Distribution of precip\_in

### The UNIVARIATE Procedure

Station=Limoges Dr 11296



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

#### Station=Apalachee Park 11299

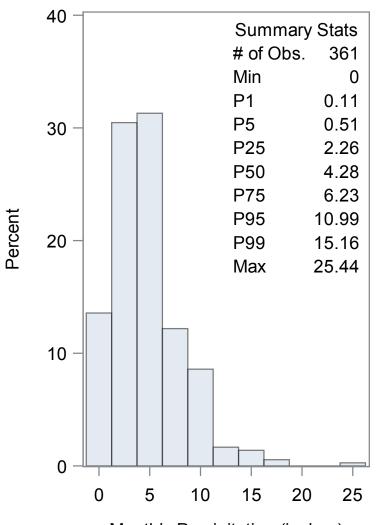
| Moments         |            |                  |            |  |
|-----------------|------------|------------------|------------|--|
| N               | 361        | Sum Weights      | 361        |  |
| Mean            | 4.76077562 | Sum Observations | 1718.64    |  |
| Std Deviation   | 3.42292142 | Variance         | 11.7163911 |  |
| Skewness        | 1.42500945 | Kurtosis         | 4.02842619 |  |
| Uncorrected SS  | 12399.9602 | Corrected SS     | 4217.90078 |  |
| Coeff Variation | 71.8983984 | Std Error Mean   | 0.18015376 |  |

| Basic Statistical Measures |                      |                     |          |  |  |
|----------------------------|----------------------|---------------------|----------|--|--|
| Loc                        | Location Variability |                     |          |  |  |
| Mean                       | 4.760776             | Std Deviation       | 3.42292  |  |  |
| Median                     | 4.280000             | Variance            | 11.71639 |  |  |
| Mode                       | 0.000000             | Range               | 25.44000 |  |  |
|                            |                      | Interquartile Range | 3.97000  |  |  |

Note: The mode displayed is the smallest of 6 modes with a count of 2.

| Tests for Location: Mu0=0 |                        |       |          |        |  |
|---------------------------|------------------------|-------|----------|--------|--|
| Test                      | Statistic p Value      |       |          |        |  |
| Student's t               | t 26.42618 Pr> t  <.00 |       | <.0001   |        |  |
| Sign                      | м                      | 179.5 | Pr >=  M | <.0001 |  |
| Signed Rank               | s                      | 32310 | Pr >=  S | <.0001 |  |

#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

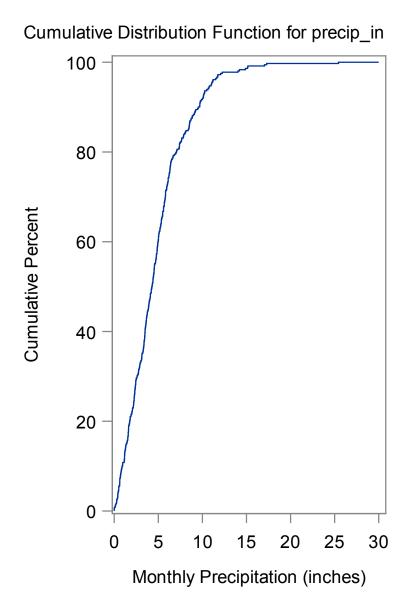

#### Station=Apalachee Park 11299

| Quantiles (Definition 5) |          |  |  |
|--------------------------|----------|--|--|
| Level                    | Quantile |  |  |
| 100% Max                 | 25.44    |  |  |
| 99%                      | 15.16    |  |  |
| 95%                      | 10.99    |  |  |
| 90%                      | 9.55     |  |  |
| 75% Q3                   | 6.23     |  |  |
| 50% Median               | 4.28     |  |  |
| 25% Q1                   | 2.26     |  |  |
| 10%                      | 0.94     |  |  |
| 5%                       | 0.51     |  |  |
| 1%                       | 0.11     |  |  |
| 0% Min                   | 0.00     |  |  |

| Extreme Observations |        |       |      |  |
|----------------------|--------|-------|------|--|
| Low                  | Lowest |       | lest |  |
| Value                | Obs    | Value | Obs  |  |
| 0.00                 | 2149   | 15.12 | 2098 |  |
| 0.00                 | 1801   | 15.16 | 1931 |  |
| 0.02                 | 2035   | 17.04 | 1839 |  |
| 0.11                 | 1932   | 17.29 | 2109 |  |
| 0.14                 | 1983   | 25.44 | 2050 |  |

### The UNIVARIATE Procedure

Station=Apalachee Park 11299

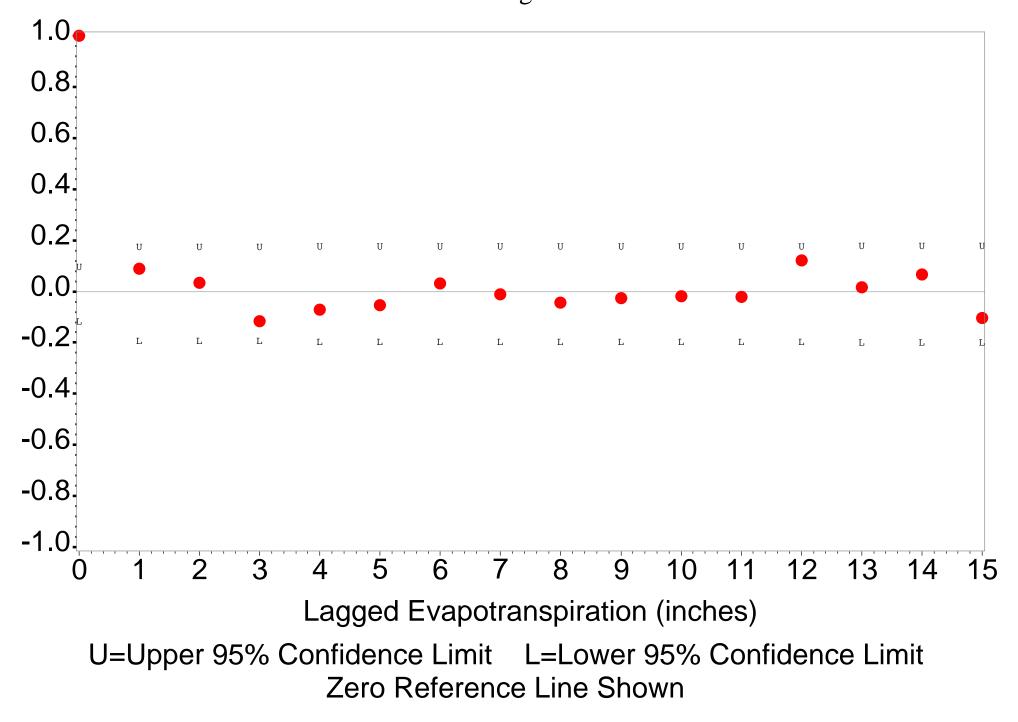



Distribution of precip\_in

Monthly Precipitation (inches)

### The UNIVARIATE Procedure

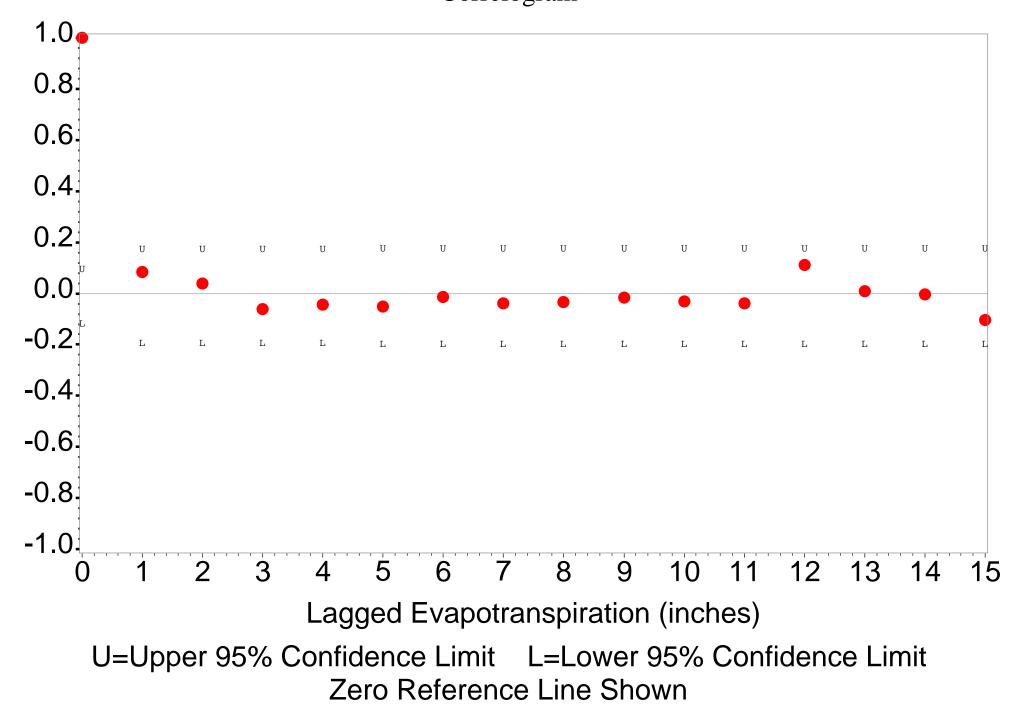
Station=Apalachee Park 11299




# 11285 Evapotranspiration Trends Autocorrelation Statistics

| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.053             | 0.107          | -0.107         |
| 1                                        | 0.089       | 0.092             | 0.185          | -0.185         |
| 2                                        | 0.034       | 0.093             | 0.185          | -0.185         |
| 3                                        | -0.117      | 0.093             | 0.185          | -0.185         |
| 4                                        | -0.070      | 0.093             | 0.186          | -0.186         |
| 5                                        | -0.054      | 0.093             | 0.186          | -0.186         |
| 6                                        | 0.032       | 0.093             | 0.187          | -0.187         |
| 7                                        | -0.011      | 0.093             | 0.187          | -0.187         |
| 8                                        | -0.044      | 0.093             | 0.187          | -0.187         |
| 9                                        | -0.026      | 0.093             | 0.187          | -0.187         |
| 10                                       | -0.019      | 0.093             | 0.187          | -0.187         |
| 11                                       | -0.022      | 0.093             | 0.187          | -0.187         |
| 12                                       | 0.121       | 0.093             | 0.187          | -0.187         |
| 13                                       | 0.016       | 0.094             | 0.188          | -0.188         |
| 14                                       | 0.067       | 0.094             | 0.188          | -0.188         |
| 15                                       | -0.104      | 0.094             | 0.188          | -0.188         |

# Correlation


11285 Evapotranspiration Trends Correlogram

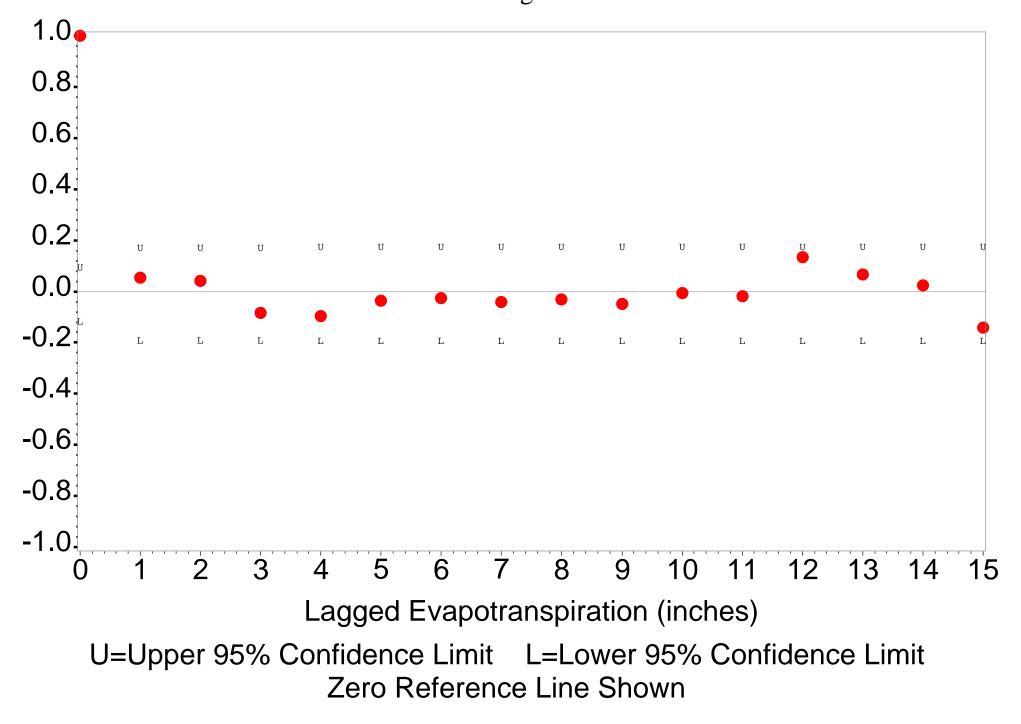


# 11288 Evapotranspiration Trends Autocorrelation Statistics

| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.053             | 0.107          | -0.107         |
| 1                                        | 0.084       | 0.092             | 0.185          | -0.185         |
| 2                                        | 0.039       | 0.093             | 0.185          | -0.185         |
| 3                                        | -0.062      | 0.093             | 0.185          | -0.185         |
| 4                                        | -0.044      | 0.093             | 0.185          | -0.185         |
| 5                                        | -0.050      | 0.093             | 0.186          | -0.186         |
| 6                                        | -0.014      | 0.093             | 0.186          | -0.186         |
| 7                                        | -0.039      | 0.093             | 0.186          | -0.186         |
| 8                                        | -0.034      | 0.093             | 0.186          | -0.186         |
| 9                                        | -0.017      | 0.093             | 0.186          | -0.186         |
| 10                                       | -0.030      | 0.093             | 0.186          | -0.186         |
| 11                                       | -0.038      | 0.093             | 0.186          | -0.186         |
| 12                                       | 0.111       | 0.093             | 0.186          | -0.186         |
| 13                                       | 0.008       | 0.093             | 0.187          | -0.187         |
| 14                                       | -0.004      | 0.093             | 0.187          | -0.187         |
| 15                                       | -0.103      | 0.093             | 0.187          | -0.187         |

11288 Evapotranspiration Trends Correlogram



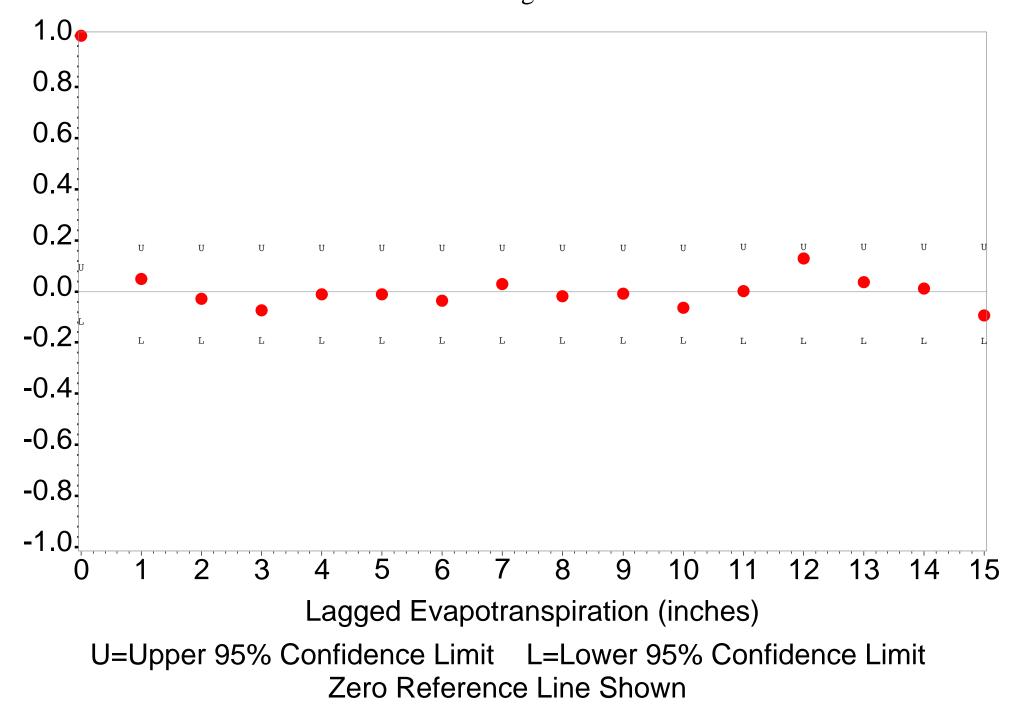

Correlation

# 11289 Evapotranspiration Trends Autocorrelation Statistics

| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.053             | 0.105          | -0.105         |
| 1                                        | 0.054       | 0.091             | 0.182          | -0.182         |
| 2                                        | 0.041       | 0.091             | 0.182          | -0.182         |
| 3                                        | -0.083      | 0.091             | 0.182          | -0.182         |
| 4                                        | -0.095      | 0.091             | 0.183          | -0.183         |
| 5                                        | -0.035      | 0.092             | 0.183          | -0.183         |
| 6                                        | -0.027      | 0.092             | 0.183          | -0.183         |
| 7                                        | -0.040      | 0.092             | 0.183          | -0.183         |
| 8                                        | -0.032      | 0.092             | 0.184          | -0.184         |
| 9                                        | -0.049      | 0.092             | 0.184          | -0.184         |
| 10                                       | -0.006      | 0.092             | 0.184          | -0.184         |
| 11                                       | -0.019      | 0.092             | 0.184          | -0.184         |
| 12                                       | 0.134       | 0.092             | 0.184          | -0.184         |
| 13                                       | 0.066       | 0.092             | 0.185          | -0.185         |
| 14                                       | 0.024       | 0.093             | 0.185          | -0.185         |
| 15                                       | -0.142      | 0.093             | 0.185          | -0.185         |

# Correlation

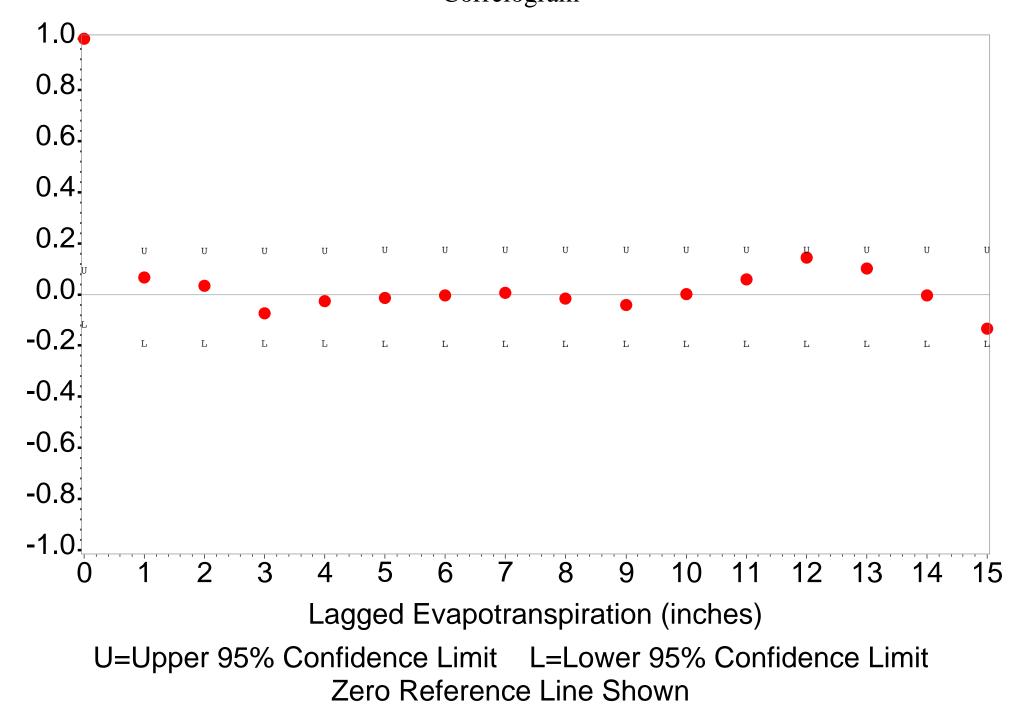
11289 Evapotranspiration Trends Correlogram




# 11293 Evapotranspiration Trends Autocorrelation Statistics

| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.052             | 0.105          | -0.105         |
| 1                                        | 0.050       | 0.091             | 0.182          | -0.182         |
| 2                                        | -0.029      | 0.091             | 0.182          | -0.182         |
| 3                                        | -0.073      | 0.091             | 0.182          | -0.182         |
| 4                                        | -0.012      | 0.091             | 0.182          | -0.182         |
| 5                                        | -0.010      | 0.091             | 0.182          | -0.182         |
| 6                                        | -0.036      | 0.091             | 0.182          | -0.182         |
| 7                                        | 0.030       | 0.091             | 0.182          | -0.182         |
| 8                                        | -0.019      | 0.091             | 0.182          | -0.182         |
| 9                                        | -0.008      | 0.091             | 0.182          | -0.182         |
| 10                                       | -0.064      | 0.091             | 0.182          | -0.182         |
| 11                                       | 0.002       | 0.091             | 0.183          | -0.183         |
| 12                                       | 0.129       | 0.091             | 0.183          | -0.183         |
| 13                                       | 0.036       | 0.092             | 0.184          | -0.184         |
| 14                                       | 0.012       | 0.092             | 0.184          | -0.184         |
| 15                                       | -0.094      | 0.092             | 0.184          | -0.184         |

# Correlation


11293 Evapotranspiration Trends Correlogram

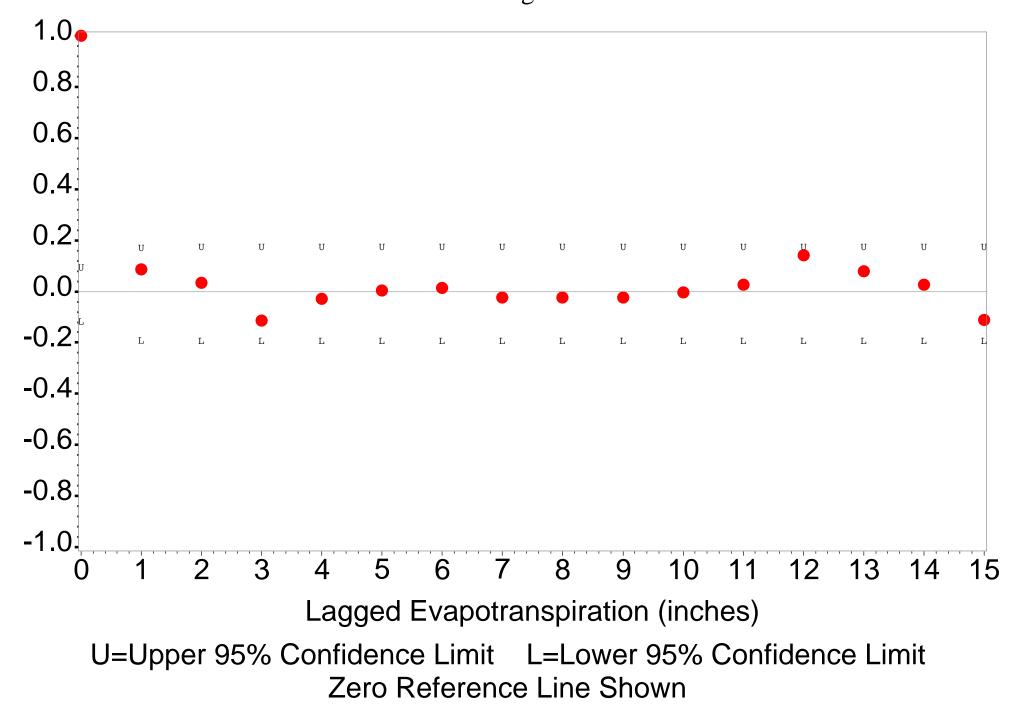


# 11296 Evapotranspiration Trends Autocorrelation Statistics

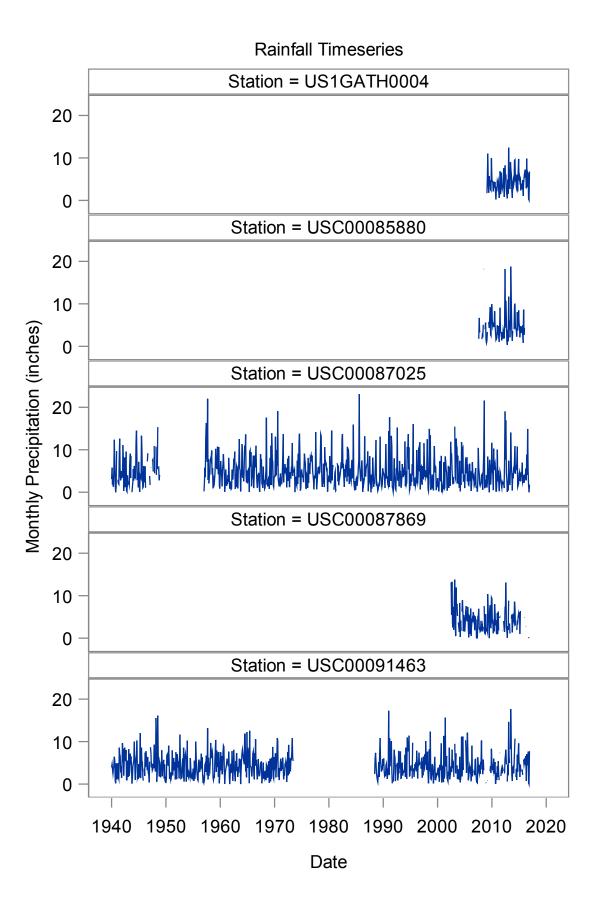
| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.052             | 0.105          | -0.105         |
| 1                                        | 0.067       | 0.091             | 0.182          | -0.182         |
| 2                                        | 0.033       | 0.091             | 0.182          | -0.182         |
| 3                                        | -0.074      | 0.091             | 0.182          | -0.182         |
| 4                                        | -0.026      | 0.091             | 0.182          | -0.182         |
| 5                                        | -0.013      | 0.091             | 0.183          | -0.183         |
| 6                                        | -0.003      | 0.091             | 0.183          | -0.183         |
| 7                                        | 0.006       | 0.091             | 0.183          | -0.183         |
| 8                                        | -0.016      | 0.091             | 0.183          | -0.183         |
| 9                                        | -0.040      | 0.091             | 0.183          | -0.183         |
| 10                                       | 0.002       | 0.091             | 0.183          | -0.183         |
| 11                                       | 0.059       | 0.091             | 0.183          | -0.183         |
| 12                                       | 0.143       | 0.091             | 0.183          | -0.183         |
| 13                                       | 0.101       | 0.092             | 0.184          | -0.184         |
| 14                                       | -0.004      | 0.092             | 0.185          | -0.185         |
| 15                                       | -0.135      | 0.092             | 0.185          | -0.185         |

11296 Evapotranspiration Trends Correlogram

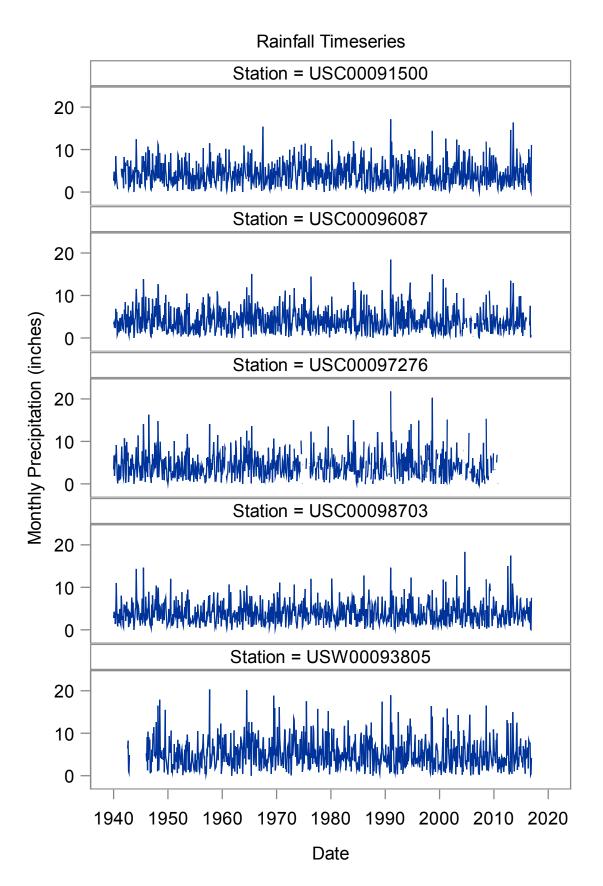


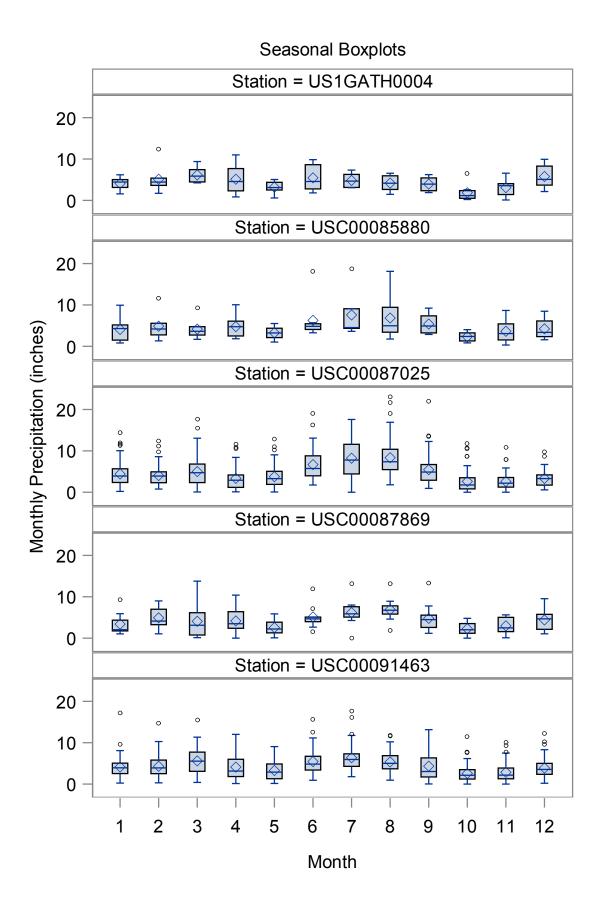

Correlation

# 11299 Evapotranspiration Trends Autocorrelation Statistics

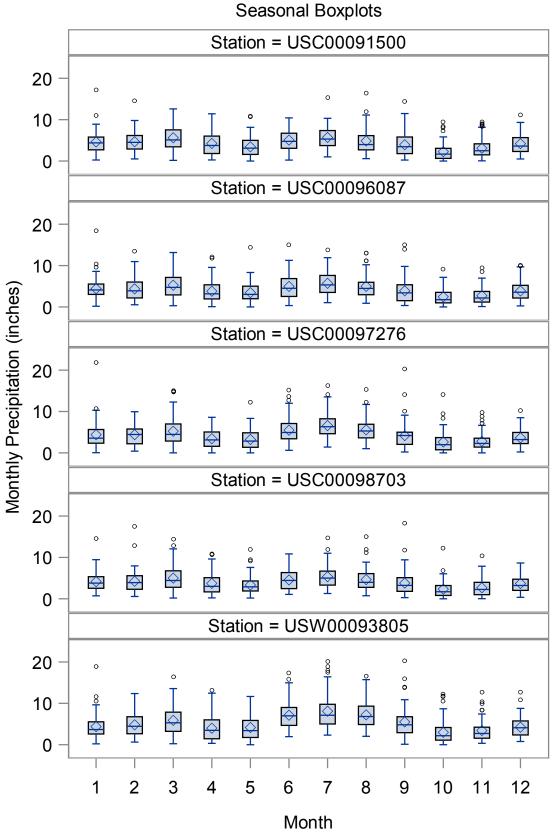

| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.053             | 0.105          | -0.105         |
| 1                                        | 0.086       | 0.091             | 0.182          | -0.182         |
| 2                                        | 0.034       | 0.091             | 0.183          | -0.183         |
| 3                                        | -0.114      | 0.091             | 0.183          | -0.183         |
| 4                                        | -0.028      | 0.092             | 0.184          | -0.184         |
| 5                                        | 0.004       | 0.092             | 0.184          | -0.184         |
| 6                                        | 0.015       | 0.092             | 0.184          | -0.184         |
| 7                                        | -0.023      | 0.092             | 0.184          | -0.184         |
| 8                                        | -0.023      | 0.092             | 0.184          | -0.184         |
| 9                                        | -0.024      | 0.092             | 0.184          | -0.184         |
| 10                                       | -0.004      | 0.092             | 0.184          | -0.184         |
| 11                                       | 0.027       | 0.092             | 0.184          | -0.184         |
| 12                                       | 0.142       | 0.092             | 0.184          | -0.184         |
| 13                                       | 0.079       | 0.093             | 0.185          | -0.185         |
| 14                                       | 0.026       | 0.093             | 0.185          | -0.185         |
| 15                                       | -0.110      | 0.093             | 0.185          | -0.185         |

# Correlation


11299 Evapotranspiration Trends Correlogram




# ATTACHMENT 5 NATIONAL WEATHER SERVICE RAINFALL DESCRIPTIVE STATISTICS AND PLOTS




### **Rainfall Timeseries**





### **Seasonal Boxplots**



| Beginning and End Dates for Rainfall Stations |
|-----------------------------------------------|
|-----------------------------------------------|

| Obs | station     | name                                | Nobs | mindate    | maxdate    |
|-----|-------------|-------------------------------------|------|------------|------------|
| 1   | US1GATH0004 | THOMASVILLE 5.1 ESE, GA US          | 96   | 01/01/2009 | 12/01/2016 |
| 2   | USC00085880 | MONTICELLO 10 SW, FL US             | 120  | 01/01/2007 | 12/01/2016 |
| 3   | USC00087025 | PERRY, FL US                        | 924  | 01/01/1940 | 12/01/2016 |
| 4   | USC00087869 | ST MARKS NWR, FL US                 | 180  | 01/01/2002 | 12/01/2016 |
| 5   | USC00091463 | CAIRO, GA US                        | 924  | 01/01/1940 | 12/01/2016 |
| 6   | USC00091500 | CAMILLA 3 SE, GA US                 | 924  | 01/01/1940 | 12/01/2016 |
| 7   | USC00096087 | MOULTRIE 2 ESE, GA US               | 924  | 01/01/1940 | 12/01/2016 |
| 8   | USC00097276 | QUITMAN 2 NW, GA US                 | 852  | 01/01/1940 | 12/01/2010 |
| 9   | USC00098703 | TIFTON, GA US                       | 924  | 01/01/1940 | 12/01/2016 |
| 10  | USW00093805 | TALLAHASSEE REGIONAL AIRPORT, FL US | 900  | 01/01/1942 | 12/01/2016 |

## Check for Data Gaps in Rainfall Timeseries

Station=US1GATH0004 name=THOMASVILLE 5.1 ESE, GA US

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 2009 | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2010 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2012 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

## Check for Data Gaps in Rainfall Timeseries

Station=USC00085880 name=MONTICELLO 10 SW, FL US

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 2007 | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1  | 0  | 1  |
| 2008 | 0     | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1  | 1  | 1  |
| 2009 | 1     | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2010 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2012 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 0  |
| 2014 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  |

## Check for Data Gaps in Rainfall Timeseries

Station=USC00087025 name=PERRY, FL US

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 1940 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1941 | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1942 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1943 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1  | 1  | 1  |
| 1944 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1945 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1946 | 1     | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0  | 0  | (  |
| 1947 | 1     | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0  | 1  | -  |
| 1948 | 0     | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1  | 1  | -  |
| 1949 | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | (  |
| 1950 | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | (  |
| 1951 | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | (  |
| 1952 | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | (  |
| 1953 | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | (  |
| 1954 | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | (  |
| 1955 | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | (  |
| 1956 | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | (  |
| 1957 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1958 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1959 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1960 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1961 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  |    |
| 1962 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1963 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1964 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1965 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1966 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1967 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1968 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1969 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1970 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1971 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1972 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1973 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |

(Continued)

Station=USC00087025 name=PERRY, FL US

|      |   |   |   |   |   | n | ont | h |   |    |    |    |
|------|---|---|---|---|---|---|-----|---|---|----|----|----|
|      | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 |
| year |   |   |   |   |   |   |     |   |   |    |    |    |
| 1974 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1975 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1976 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1977 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1978 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1979 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1980 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 0  | 1  |
| 1981 | 1 | 1 | 1 | 1 | 1 | 0 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1982 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1983 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1984 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1985 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1986 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1987 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1988 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1989 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1990 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1991 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1992 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1993 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1994 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1995 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1996 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1997 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1998 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1999 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2000 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2001 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2002 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2003 | 1 | 0 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2004 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2005 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2006 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2007 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |

Station=USC00087025 name=PERRY, FL US

|      |   |   |   |   |   | n | ont | h |   |    |    |    |
|------|---|---|---|---|---|---|-----|---|---|----|----|----|
|      | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 |
| year |   |   |   |   |   |   |     |   |   |    |    |    |
| 2008 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2009 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2010 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2012 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |

Station=USC00087869 name=ST MARKS NWR, FL US

|      |   |   |   |   |   | n | ont | h |   |    |    |    |
|------|---|---|---|---|---|---|-----|---|---|----|----|----|
|      | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 |
| year |   |   |   |   |   |   |     |   |   |    |    |    |
| 2002 | 0 | 0 | 0 | 0 | 0 | 0 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2003 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 0  | 1  | 1  |
| 2004 | 1 | 1 | 1 | 1 | 1 | 0 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2005 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2006 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2007 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2008 | 1 | 1 | 1 | 1 | 1 | 1 | 0   | 1 | 1 | 1  | 1  | 1  |
| 2009 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2010 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1 | 1 | 1 | 1 | 0 | 1 | 1   | 0 | 1 | 0  | 0  | 0  |
| 2012 | 1 | 0 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1 | 1 | 0 | 1 | 1 | 0 | 0   | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1 | 1 | 1 | 1 | 1 | 0 | 0   | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1 | 1 | 1 | 1 | 0 | 0 | 0   | 0 | 0 | 0  | 0  | 0  |
| 2016 | 0 | 1 | 0 | 0 | 1 | 0 | 0   | 0 | 0 | 1  | 1  | 0  |

Station=USC00091463 name=CAIRO, GA US

|      |   |   |   |   |   | m | nont | h |   |    |    |    |
|------|---|---|---|---|---|---|------|---|---|----|----|----|
|      | 1 | 2 | 3 | 4 | 5 | 6 | 7    | 8 | 9 | 10 | 11 | 12 |
| year |   |   |   |   |   |   |      |   |   |    |    |    |
| 1940 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1941 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1942 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1943 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1944 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1945 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 0  |
| 1946 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1947 | 1 | 0 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1948 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1949 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1950 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1951 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1952 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1953 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1954 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1955 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1956 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1957 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1958 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1959 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1960 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1961 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1962 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1963 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1964 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1965 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1966 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1967 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1968 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1969 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1970 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1971 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1972 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1973 | 1 | 1 | 1 | 1 | 1 | 1 | 0    | 0 | 0 | 0  | 0  | 0  |

Station=USC00091463 name=CAIRO, GA US

|      |   |   |   |   |   | m | nont | h |   |    |    |    |
|------|---|---|---|---|---|---|------|---|---|----|----|----|
|      | 1 | 2 | 3 | 4 | 5 | 6 | 7    | 8 | 9 | 10 | 11 | 12 |
| year |   |   |   |   |   |   |      |   |   |    |    |    |
| 1974 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | 0  |
| 1975 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | 0  |
| 1976 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | 0  |
| 1977 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | 0  |
| 1978 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | 0  |
| 1979 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | 0  |
| 1980 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | 0  |
| 1981 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | 0  |
| 1982 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | 0  |
| 1983 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | C  |
| 1984 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | C  |
| 1985 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | C  |
| 1986 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | C  |
| 1987 | 0 | 0 | 0 | 0 | 0 | 0 | 0    | 0 | 0 | 0  | 0  | 0  |
| 1988 | 0 | 0 | 0 | 0 | 0 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1989 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1990 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1991 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 0  | 1  | 1  |
| 1992 | 1 | 1 | 1 | 1 | 1 | 0 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1993 | 0 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1994 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1995 | 1 | 1 | 1 | 0 | 1 | 1 | 0    | 1 | 1 | 1  | 1  | 1  |
| 1996 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 0  | 1  |
| 1997 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1998 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1999 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2000 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2001 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2002 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2003 | 1 | 0 | 1 | 1 | 1 | 1 | 0    | 1 | 1 | 1  | 1  | 1  |
| 2004 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 0  | 0  |
| 2005 | 0 | 0 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2006 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 0 | 1 | 1  | 1  | 1  |
| 2007 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |

Station=USC00091463 name=CAIRO, GA US

|      |   |   |   |   |   | m | ont | h |   |    |    |    |
|------|---|---|---|---|---|---|-----|---|---|----|----|----|
|      | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 |
| year |   |   |   |   |   |   |     |   |   |    |    |    |
| 2008 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 0 | 0 | 0  | 0  | 1  |
| 2009 | 0 | 1 | 0 | 1 | 0 | 0 | 0   | 0 | 1 | 1  | 1  | 1  |
| 2010 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1 | 1 | 1 | 1 | 1 | 0 | 1   | 0 | 1 | 1  | 1  | 1  |
| 2012 | 1 | 1 | 0 | 0 | 1 | 1 | 1   | 1 | 1 | 0  | 1  | 1  |
| 2013 | 1 | 1 | 1 | 1 | 0 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1 | 1 | 1 | 1 | 0 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1 | 1 | 1 | 1 | 1 | 0 | 0   | 1 | 1 | 0  | 1  | 1  |
| 2016 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |

Station=USC00091500 name=CAMILLA 3 SE, GA US

|      |   |   |   |   |   | n | ont | h |   |    |    |    |
|------|---|---|---|---|---|---|-----|---|---|----|----|----|
|      | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 |
| year |   |   |   |   |   |   |     |   |   |    |    |    |
| 1940 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 0  | 0  |
| 1941 | 0 | 0 | 0 | 0 | 0 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1942 | 1 | 1 | 1 | 1 | 0 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1943 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1944 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1945 | 1 | 1 | 1 | 1 | 0 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1946 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1947 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1948 | 1 | 1 | 1 | 1 | 1 | 0 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1949 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1950 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1951 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 0 | 1 | 1  | 1  | 1  |
| 1952 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1953 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1954 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1955 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1956 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1957 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1958 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1959 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1960 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1961 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1962 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1963 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1964 | 1 | 1 | 1 | 1 | 1 | 1 | 0   | 1 | 1 | 1  | 1  | 1  |
| 1965 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1966 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1967 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1968 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1969 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1970 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1971 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1972 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1973 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |

Station=USC00091500 name=CAMILLA 3 SE, GA US

|      |   |   |   |   |   | n | ont | h |   |    |    |    |
|------|---|---|---|---|---|---|-----|---|---|----|----|----|
|      | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 |
| year |   |   |   |   |   |   |     |   |   |    |    |    |
| 1974 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1975 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1976 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1977 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1978 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1979 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1980 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1981 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1982 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1983 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1984 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1985 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1986 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1987 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1988 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1989 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1990 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1991 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1992 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1993 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1994 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1995 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1996 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1997 | 1 | 1 | 1 | 0 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1998 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 1999 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2000 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2001 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2002 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2003 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2004 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2005 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2006 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2007 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |

Station=USC00091500 name=CAMILLA 3 SE, GA US

|      |   |   |   |   |   | m | nont | h |   |    |    |    |
|------|---|---|---|---|---|---|------|---|---|----|----|----|
|      | 1 | 2 | 3 | 4 | 5 | 6 | 7    | 8 | 9 | 10 | 11 | 12 |
| year |   |   |   |   |   |   |      |   |   |    |    |    |
| 2008 | 1 | 1 | 1 | 1 | 1 | 1 | 0    | 1 | 1 | 1  | 1  | 1  |
| 2009 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2010 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2012 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |

Station=USC00096087 name=MOULTRIE 2 ESE, GA US

|      |   |   |   |   |   | m | nont | h |   |    |    |    |
|------|---|---|---|---|---|---|------|---|---|----|----|----|
|      | 1 | 2 | 3 | 4 | 5 | 6 | 7    | 8 | 9 | 10 | 11 | 12 |
| year |   |   |   |   |   |   |      |   |   |    |    |    |
| 1940 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1941 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1942 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1943 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1944 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1945 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1946 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1947 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1948 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1949 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1950 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1951 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1952 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1953 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1954 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1955 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1956 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1957 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1958 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1959 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1960 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1961 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1962 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1963 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1964 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1965 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1966 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1967 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1968 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1969 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1970 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1971 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1972 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1973 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |

Station=USC00096087 name=MOULTRIE 2 ESE, GA US

|      |   |   |   |   |   | m | nont | h |   |    |    |    |
|------|---|---|---|---|---|---|------|---|---|----|----|----|
|      | 1 | 2 | 3 | 4 | 5 | 6 | 7    | 8 | 9 | 10 | 11 | 12 |
| year |   |   |   |   |   |   |      |   |   |    |    |    |
| 1974 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1975 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1976 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1977 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1978 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1979 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1980 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1981 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1982 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1983 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1984 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1985 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1986 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1987 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1988 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1989 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1990 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1991 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1992 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1993 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1994 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1995 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1996 | 1 | 1 | 0 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1997 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1998 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 1999 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2000 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2001 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2002 | 1 | 1 | 0 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2003 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 1  |
| 2004 | 0 | 0 | 1 | 1 | 1 | 1 | 1    | 1 | 0 | 0  | 1  | 1  |
| 2005 | 1 | 1 | 0 | 0 | 0 | 0 | 0    | 1 | 1 | 1  | 1  | 1  |
| 2006 | 0 | 0 | 1 | 0 | 0 | 1 | 1    | 1 | 1 | 0  | 1  | 1  |
| 2007 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 | 1  | 1  | 0  |

Station=USC00096087 name=MOULTRIE 2 ESE, GA US

|      |   |   |   |   |   | m | ont | h |   |    |    |    |
|------|---|---|---|---|---|---|-----|---|---|----|----|----|
|      | 1 | 2 | 3 | 4 | 5 | 6 | 7   | 8 | 9 | 10 | 11 | 12 |
| year |   |   |   |   |   |   |     |   |   |    |    |    |
| 2008 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2009 | 1 | 0 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2010 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1 | 1 | 1 | 1 | 1 | 0 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2012 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1 | 1 | 1 | 1 | 1 | 1 | 1   | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1 | 0 | 0 | 0 | 0 | 0 | 0   | 1 | 1 | 1  | 1  | 0  |

Station=USC00097276 name=QUITMAN 2 NW, GA US

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 1940 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1941 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1942 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1943 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1944 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1945 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1946 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1947 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1948 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1949 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1950 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1951 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1952 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1953 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1954 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1955 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 0  | 1  |
| 1956 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1  | 1  | 1  |
| 1957 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1958 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1959 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1960 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1  | 1  | 1  |
| 1961 | 1     | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1962 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1963 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1964 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1965 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1966 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1967 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1968 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1969 | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1970 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1971 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1972 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1973 | 1     | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

Station=USC00097276 name=QUITMAN 2 NW, GA US

|      | month |   |   |   |   |   |   |   |   |    |    |    |  |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|--|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |  |
| year |       |   |   |   |   |   |   |   |   |    |    |    |  |
| 1974 | 1     | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1  | 0  | 1  |  |
| 1975 | 0     | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0  | 0  | 0  |  |
| 1976 | 1     | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 1977 | 1     | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1  | 0  | 1  |  |
| 1978 | 1     | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 1979 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1  | 1  | 1  |  |
| 1980 | 1     | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 1981 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 1982 | 1     | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 1983 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 1984 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 1985 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 1986 | 1     | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1  | 1  | 1  |  |
| 1987 | 1     | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1  | 1  | 0  |  |
| 1988 | 1     | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 1989 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 1990 | 1     | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1  | 0  | 0  |  |
| 1991 | 1     | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1  | 1  | 0  |  |
| 1992 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0  | 1  | 1  |  |
| 1993 | 1     | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 1994 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 1995 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1  | 1  | 1  |  |
| 1996 | 0     | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1  | 1  | 1  |  |
| 1997 | 0     | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1  | 1  | 0  |  |
| 1998 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 1999 | 1     | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0  | 1  | 1  |  |
| 2000 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 2001 | 1     | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1  | 1  | 1  |  |
| 2002 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |
| 2003 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1  | 1  | 1  |  |
| 2004 | 1     | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1  | 1  | 1  |  |
| 2005 | 1     | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0  | 1  | 1  |  |
| 2006 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1  | 1  | 1  |  |
| 2007 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |  |

Station=USC00097276 name=QUITMAN 2 NW, GA US

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 2008 | 1     | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1  | 1  | 1  |
| 2009 | 1     | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0  | 1  | 1  |
| 2010 | 0     | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1  | 0  | 0  |

Station=USC00098703 name=TIFTON, GA US

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 1940 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1941 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1942 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1943 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1944 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1945 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1946 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1947 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1948 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1949 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1950 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1951 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1952 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1953 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1954 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1955 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1956 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  |    |
| 1957 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1958 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  |    |
| 1959 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  |    |
| 1960 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1961 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1962 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1963 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1964 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1965 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1966 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1967 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1968 | 1     | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1969 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1970 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1971 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1972 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1973 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

Station=USC00098703 name=TIFTON, GA US

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 1974 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1975 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1976 | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1977 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1978 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0  | 1  | 1  |
| 1979 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1980 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1981 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1982 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1983 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1984 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1985 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1986 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1987 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1988 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1989 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  |    |
| 1990 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1991 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1992 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1993 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1994 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1995 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1996 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1997 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1998 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 1999 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 2000 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 2001 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 2002 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 2003 | 1     | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1  | 1  | -  |
| 2004 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 2005 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 2006 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | -  |
| 2007 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

Station=USC00098703 name=TIFTON, GA US

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 2008 | 1     | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1  | 1  | 1  |
| 2009 | 1     | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2010 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2012 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

### Station=USW00093805 name=TALLAHASSEE REGIONAL AIRPORT, FL US

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 1942 | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1  | 1  | 1  |
| 1943 | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  |
| 1944 | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | C  |
| 1945 | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | C  |
| 1946 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1947 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1948 | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1949 | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1950 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1951 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1952 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1953 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1954 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1955 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1956 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1957 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1958 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1959 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1960 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1961 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1962 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1963 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1964 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1965 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1966 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1967 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1968 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1969 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1970 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1971 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1972 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1973 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1974 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1975 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

### Station=USW00093805 name=TALLAHASSEE REGIONAL AIRPORT, FL US

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 1976 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1977 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1978 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1979 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1980 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1981 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1982 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1983 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1984 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1985 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1986 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1987 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1988 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1989 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1990 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1991 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1992 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1993 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1994 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1995 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1996 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1997 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1998 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 1999 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2000 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2001 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2002 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2003 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2004 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2005 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2006 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2007 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2008 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2009 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

|      | month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| year |       |   |   |   |   |   |   |   |   |    |    |    |
| 2010 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2011 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2012 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2013 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2014 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2015 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |

Station=USW00093805 name=TALLAHASSEE REGIONAL AIRPORT, FL US

#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

Station=US1GATH0004 name=THOMASVILLE 5.1 ESE, GA US

| Moments         |            |                  |            |  |  |  |  |  |  |  |  |
|-----------------|------------|------------------|------------|--|--|--|--|--|--|--|--|
| N               | 95         | Sum Weights      | 95         |  |  |  |  |  |  |  |  |
| Mean            | 4.40473684 | Sum Observations | 418.45     |  |  |  |  |  |  |  |  |
| Std Deviation   | 2.54221249 | Variance         | 6.46284434 |  |  |  |  |  |  |  |  |
| Skewness        | 0.75827355 | Kurtosis         | 0.58603891 |  |  |  |  |  |  |  |  |
| Uncorrected SS  | 2450.6695  | Corrected SS     | 607.507368 |  |  |  |  |  |  |  |  |
| Coeff Variation | 57.7154228 | Std Error Mean   | 0.2608255  |  |  |  |  |  |  |  |  |

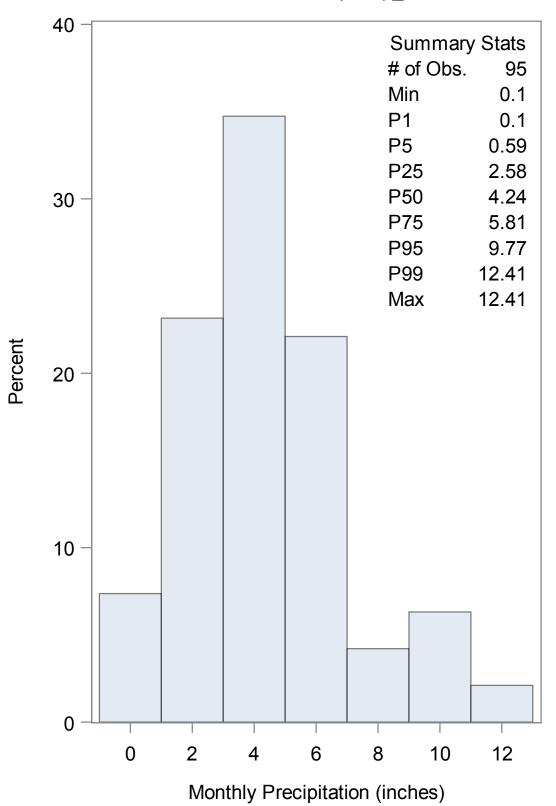
|                      | Basic Statistical Measures |                     |          |  |  |  |  |  |  |  |  |  |
|----------------------|----------------------------|---------------------|----------|--|--|--|--|--|--|--|--|--|
| Location Variability |                            |                     |          |  |  |  |  |  |  |  |  |  |
| Mean                 | 4.404737                   | Std Deviation       | 2.54221  |  |  |  |  |  |  |  |  |  |
| Median               | 4.240000                   | Variance            | 6.46284  |  |  |  |  |  |  |  |  |  |
| Mode                 | 2.350000                   | Range               | 12.31000 |  |  |  |  |  |  |  |  |  |
|                      |                            | Interquartile Range | 3.23000  |  |  |  |  |  |  |  |  |  |

Note: The mode displayed is the smallest of 2 modes with a count of 3.

| Tests for Location: Mu0=0 |                   |          |          |        |  |  |  |  |  |  |  |
|---------------------------|-------------------|----------|----------|--------|--|--|--|--|--|--|--|
| Test                      | Statistic p Value |          |          |        |  |  |  |  |  |  |  |
| Student's t               | t                 | 16.88768 | Pr >  t  | <.0001 |  |  |  |  |  |  |  |
| Sign                      | м                 | 47.5     | Pr >=  M | <.0001 |  |  |  |  |  |  |  |
| Signed Rank               | s                 | 2280     | Pr >=  S | <.0001 |  |  |  |  |  |  |  |

| Quantiles (Definition 5) |          |  |  |
|--------------------------|----------|--|--|
| Level                    | Quantile |  |  |
| 100% Max                 | 12.41    |  |  |
| 99%                      | 12.41    |  |  |
| 95%                      | 9.77     |  |  |
| 90%                      | 7.63     |  |  |
| 75% Q3                   | 5.81     |  |  |
| 50% Median               | 4.24     |  |  |
| 25% Q1                   | 2.58     |  |  |
| 10%                      | 1.46     |  |  |
| 5%                       | 0.59     |  |  |
| 1%                       | 0.10     |  |  |
| 0% Min                   | 0.10     |  |  |

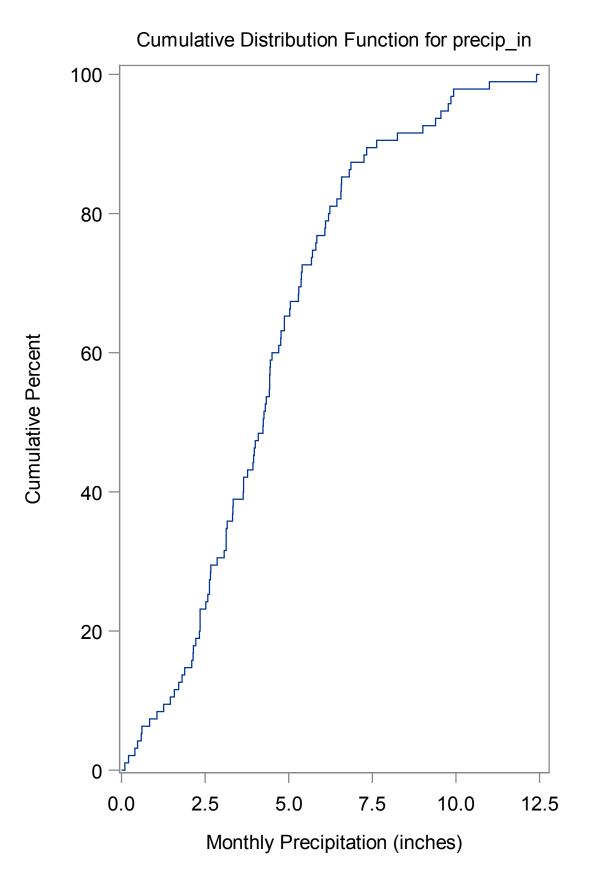
#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))


Station=US1GATH0004 name=THOMASVILLE 5.1 ESE, GA US

| Extreme Observations |      |       |     |  |
|----------------------|------|-------|-----|--|
| Low                  | High | est   |     |  |
| Value                | Obs  | Value | Obs |  |
| 0.10                 | 95   | 9.77  | 72  |  |
| 0.21                 | 22   | 9.85  | 90  |  |
| 0.40                 | 94   | 9.93  | 12  |  |
| 0.48                 | 47   | 11.00 | 4   |  |
| 0.59                 | 29   | 12.41 | 50  |  |

| Missing Values   |       |            |                |  |
|------------------|-------|------------|----------------|--|
|                  |       | Percent Of |                |  |
| Missing<br>Value | Count | All Obs    | Missing<br>Obs |  |
|                  | 1     | 1.04       | 100.00         |  |

#### The UNIVARIATE Procedure


Station=US1GATH0004 name=THOMASVILLE 5.1 ESE, GA US



Distribution of precip\_in

#### The UNIVARIATE Procedure

Station=US1GATH0004 name=THOMASVILLE 5.1 ESE, GA US



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

Station=USC00085880 name=MONTICELLO 10 SW, FL US

| Moments          |            |                  |            |  |  |
|------------------|------------|------------------|------------|--|--|
| N 94 Sum Weights |            |                  |            |  |  |
| Mean             | 4.765      | Sum Observations | 447.91     |  |  |
| Std Deviation    | 3.51158107 | Variance         | 12.3312016 |  |  |
| Skewness         | 2.05926452 | Kurtosis         | 5.44179745 |  |  |
| Uncorrected SS   | 3281.0929  | Corrected SS     | 1146.80175 |  |  |
| Coeff Variation  | 73.6953005 | Std Error Mean   | 0.36219193 |  |  |

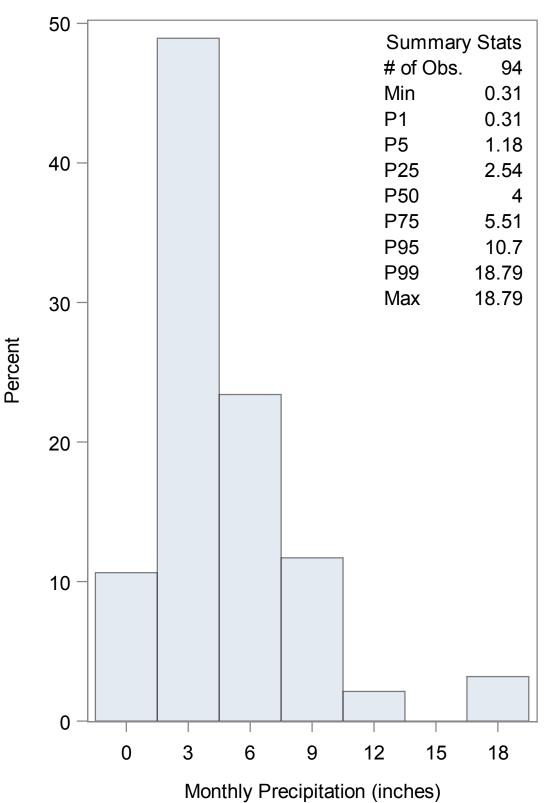
| Basic Statistical Measures |          |                     |          |  |
|----------------------------|----------|---------------------|----------|--|
| Location Variability       |          |                     |          |  |
| Mean                       | 4.765000 | Std Deviation       | 3.51158  |  |
| Median                     | 4.000000 | Variance            | 12.33120 |  |
| Mode                       | 2.110000 | Range               | 18.48000 |  |
|                            |          | Interquartile Range | 2.97000  |  |

Note: The mode displayed is the smallest of 2 modes with a count of 2.

| Tests for Location: Mu0=0 |                   |          |          |        |  |
|---------------------------|-------------------|----------|----------|--------|--|
| Test                      | Statistic p Value |          |          |        |  |
| Student's t               | t                 | 13.15601 | Pr >  t  | <.0001 |  |
| Sign                      | м                 | 47       | Pr >=  M | <.0001 |  |
| Signed Rank               | s                 | 2232.5   | Pr >=  S | <.0001 |  |

| Quantiles (Definition 5) |          |  |  |
|--------------------------|----------|--|--|
| Level                    | Quantile |  |  |
| 100% Max                 | 18.79    |  |  |
| 99%                      | 18.79    |  |  |
| 95%                      | 10.70    |  |  |
| 90%                      | 9.23     |  |  |
| 75% Q3                   | 5.51     |  |  |
| 50% Median               | 4.00     |  |  |
| 25% Q1                   | 2.54     |  |  |
| 10%                      | 1.48     |  |  |
| 5%                       | 1.18     |  |  |
| 1%                       | 0.31     |  |  |
| 0% Min                   | 0.31     |  |  |

#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))


Station=USC00085880 name=MONTICELLO 10 SW, FL US

| Extreme Observations |     |       |     |  |
|----------------------|-----|-------|-----|--|
| Lowest Highest       |     |       |     |  |
| Value                | Obs | Value | Obs |  |
| 0.31                 | 167 | 10.70 | 164 |  |
| 0.81                 | 121 | 11.68 | 170 |  |
| 0.83                 | 202 | 18.12 | 116 |  |
| 1.03                 | 149 | 18.17 | 162 |  |
| 1.18                 | 169 | 18.79 | 175 |  |

| Missing Values   |       |            |                |  |
|------------------|-------|------------|----------------|--|
|                  |       | Percent Of |                |  |
| Missing<br>Value | Count | All Obs    | Missing<br>Obs |  |
|                  | 26    | 21.67      | 100.00         |  |

#### The UNIVARIATE Procedure

Station=USC00085880 name=MONTICELLO 10 SW, FL US



Distribution of precip\_in

#### The UNIVARIATE Procedure

Station=USC00085880 name=MONTICELLO 10 SW, FL US



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

Station=USC00087025 name=PERRY, FL US

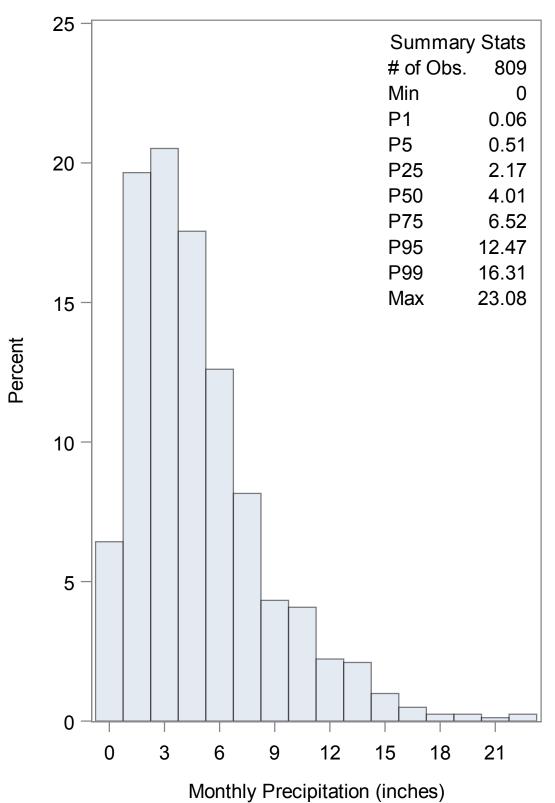
| Moments         |                   |                  |            |  |  |  |
|-----------------|-------------------|------------------|------------|--|--|--|
| Ν               | N 809 Sum Weights |                  |            |  |  |  |
| Mean            | 4.82154512        | Sum Observations | 3900.63    |  |  |  |
| Std Deviation   | 3.6770423         | Variance         | 13.5206401 |  |  |  |
| Skewness        | 1.39792462        | Kurtosis         | 2.49091666 |  |  |  |
| Uncorrected SS  | 29731.7407        | Corrected SS     | 10924.6772 |  |  |  |
| Coeff Variation | 76.2627375        | Std Error Mean   | 0.12927792 |  |  |  |

|        | Basic Statistical Measures |                     |          |  |  |
|--------|----------------------------|---------------------|----------|--|--|
| Loc    | Location Variability       |                     |          |  |  |
| Mean   | 4.821545                   | Std Deviation       | 3.67704  |  |  |
| Median | 4.010000                   | Variance            | 13.52064 |  |  |
| Mode   | 1.200000                   | Range               | 23.08000 |  |  |
|        |                            | Interquartile Range | 4.35000  |  |  |

| Tests for Location: Mu0=0 |                   |          |          |        |  |
|---------------------------|-------------------|----------|----------|--------|--|
| Test                      | Statistic p Value |          |          |        |  |
| Student's t               | t                 | 37.29597 | Pr >  t  | <.0001 |  |
| Sign                      | м                 | 402      | Pr >=  M | <.0001 |  |
| Signed Rank               | s                 | 161805   | Pr >=  S | <.0001 |  |

| Quantiles (Definition 5) |          |  |
|--------------------------|----------|--|
| Level                    | Quantile |  |
| 100% Max                 | 23.08    |  |
| 99%                      | 16.31    |  |
| 95%                      | 12.47    |  |
| 90%                      | 10.05    |  |
| 75% Q3                   | 6.52     |  |
| 50% Median               | 4.01     |  |
| 25% Q1                   | 2.17     |  |
| 10%                      | 1.06     |  |
| 5%                       | 0.51     |  |
| 1%                       | 0.06     |  |
| 0% Min                   | 0.00     |  |

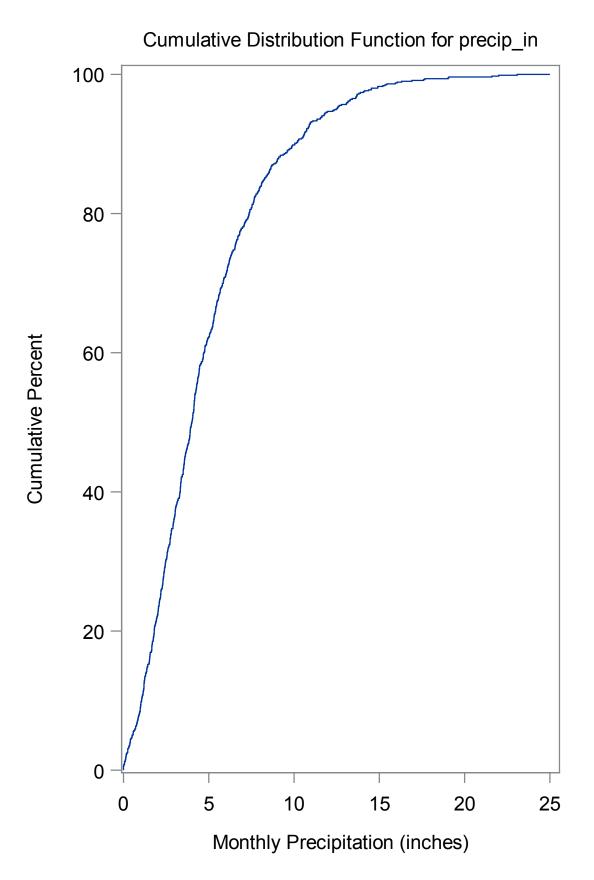
#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))


Station=USC00087025 name=PERRY, FL US

| Extr   | Extreme Observations |         |      |  |  |
|--------|----------------------|---------|------|--|--|
| Lowest |                      | Highest |      |  |  |
| Value  | Obs                  | Value   | Obs  |  |  |
| 0      | 1051                 | 19.03   | 1086 |  |  |
| 0      | 946                  | 19.08   | 584  |  |  |
| 0      | 790                  | 21.60   | 1040 |  |  |
| 0      | 262                  | 22.00   | 429  |  |  |
| 0      | 226                  | 23.08   | 764  |  |  |

| Missing Values   |       |            |                |  |
|------------------|-------|------------|----------------|--|
|                  |       | Percent Of |                |  |
| Missing<br>Value | Count | All Obs    | Missing<br>Obs |  |
|                  | 115   | 12.45      | 100.00         |  |

#### The UNIVARIATE Procedure


Station=USC00087025 name=PERRY, FL US



# Distribution of precip\_in

#### The UNIVARIATE Procedure

Station=USC00087025 name=PERRY, FL US



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

Station=USC00087869 name=ST MARKS NWR, FL US

| Moments         |                 |                  |            |  |
|-----------------|-----------------|------------------|------------|--|
| N               | 144 Sum Weights |                  | 144        |  |
| Mean            | 4.26            | Sum Observations | 613.44     |  |
| Std Deviation   | 2.94439731      | Variance         | 8.66947552 |  |
| Skewness        | 0.95158375      | Kurtosis         | 1.02555519 |  |
| Uncorrected SS  | 3852.9894       | Corrected SS     | 1239.735   |  |
| Coeff Variation | 69.1173078      | Std Error Mean   | 0.24536644 |  |

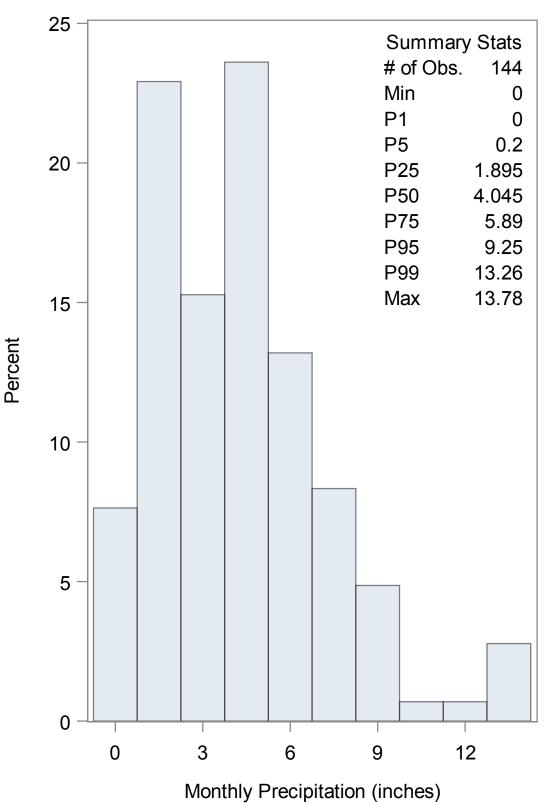
| Basic Statistical Measures |          |                     |          |
|----------------------------|----------|---------------------|----------|
| Location Variability       |          |                     |          |
| Mean                       | 4.260000 | Std Deviation       | 2.94440  |
| Median                     | 4.045000 | Variance            | 8.66948  |
| Mode                       | 0.000000 | Range               | 13.78000 |
|                            |          | Interquartile Range | 3.99500  |

Note: The mode displayed is the smallest of 2 modes with a count of 3.

| Tests for Location: Mu0=0 |                   |        |          |        |  |
|---------------------------|-------------------|--------|----------|--------|--|
| Test                      | Statistic p Value |        |          |        |  |
| Student's t               | t 17.36179        |        | Pr >  t  | <.0001 |  |
| Sign                      | м                 | 70.5   | Pr >=  M | <.0001 |  |
| Signed Rank               | s                 | 5005.5 | Pr >=  S | <.0001 |  |

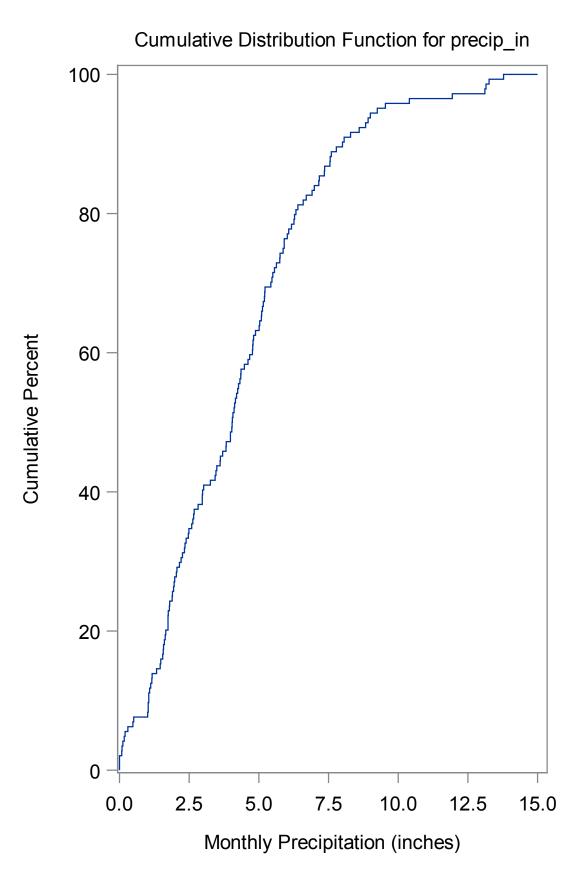
| Quantiles (Definition 5) |          |  |
|--------------------------|----------|--|
| Level                    | Quantile |  |
| 100% Max                 | 13.780   |  |
| 99%                      | 13.260   |  |
| 95%                      | 9.250    |  |
| 90%                      | 8.000    |  |
| 75% Q3                   | 5.890    |  |
| 50% Median               | 4.045    |  |
| 25% Q1                   | 1.895    |  |
| 10%                      | 1.050    |  |
| 5%                       | 0.200    |  |
| 1%                       | 0.000    |  |
| 0% Min                   | 0.000    |  |

#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))


Station=USC00087869 name=ST MARKS NWR, FL US

| Extreme Observations |        |       |      |  |  |
|----------------------|--------|-------|------|--|--|
| Low                  | Lowest |       | nest |  |  |
| Value                | Obs    | Value | Obs  |  |  |
| 0.00                 | 1318   | 11.94 | 1158 |  |  |
| 0.00                 | 1231   | 13.11 | 1268 |  |  |
| 0.00                 | 1204   | 13.15 | 1147 |  |  |
| 0.08                 | 1205   | 13.26 | 1149 |  |  |
| 0.09                 | 1271   | 13.78 | 1155 |  |  |

| Missing Values   |       |            |                |  |
|------------------|-------|------------|----------------|--|
|                  |       | Percent Of |                |  |
| Missing<br>Value | Count | All Obs    | Missing<br>Obs |  |
|                  | 36    | 20.00      | 100.00         |  |


### The UNIVARIATE Procedure

Station=USC00087869 name=ST MARKS NWR, FL US



Distribution of precip\_in

Station=USC00087869 name=ST MARKS NWR, FL US



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

| Moments         |            |                  |            |  |
|-----------------|------------|------------------|------------|--|
| N               | 710        | Sum Weights      | 710        |  |
| Mean            | 4.35040845 | Sum Observations | 3088.79    |  |
| Std Deviation   | 2.89384907 | Variance         | 8.37436246 |  |
| Skewness        | 1.08439819 | Kurtosis         | 1.73545232 |  |
| Uncorrected SS  | 19374.9211 | Corrected SS     | 5937.42298 |  |
| Coeff Variation | 66.5190201 | Std Error Mean   | 0.10860422 |  |

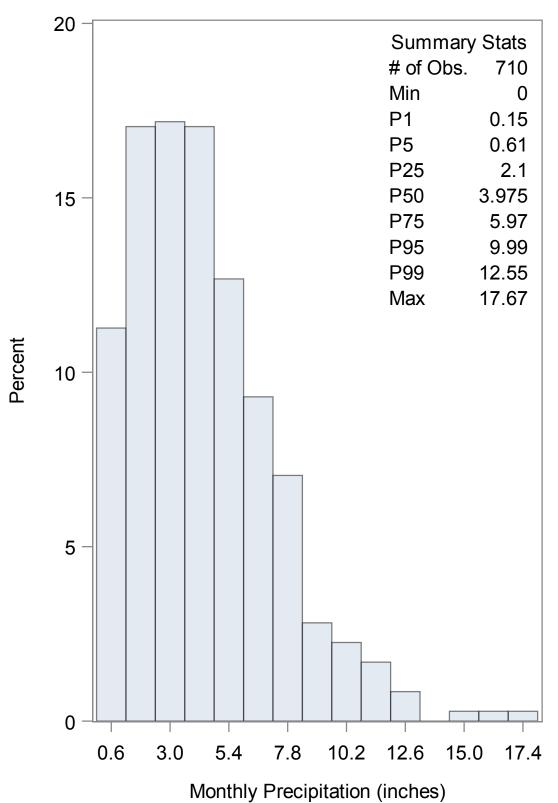
Station=USC00091463 name=CAIRO, GA US

| Basic Statistical Measures |          |                     |          |  |
|----------------------------|----------|---------------------|----------|--|
| Location Variability       |          |                     |          |  |
| Mean                       | 4.350408 | Std Deviation       | 2.89385  |  |
| Median                     | 3.975000 | Variance            | 8.37436  |  |
| Mode                       | 2.300000 | Range               | 17.67000 |  |
|                            |          | Interquartile Range | 3.87000  |  |

Note: The mode displayed is the smallest of 2 modes with a count of 5.

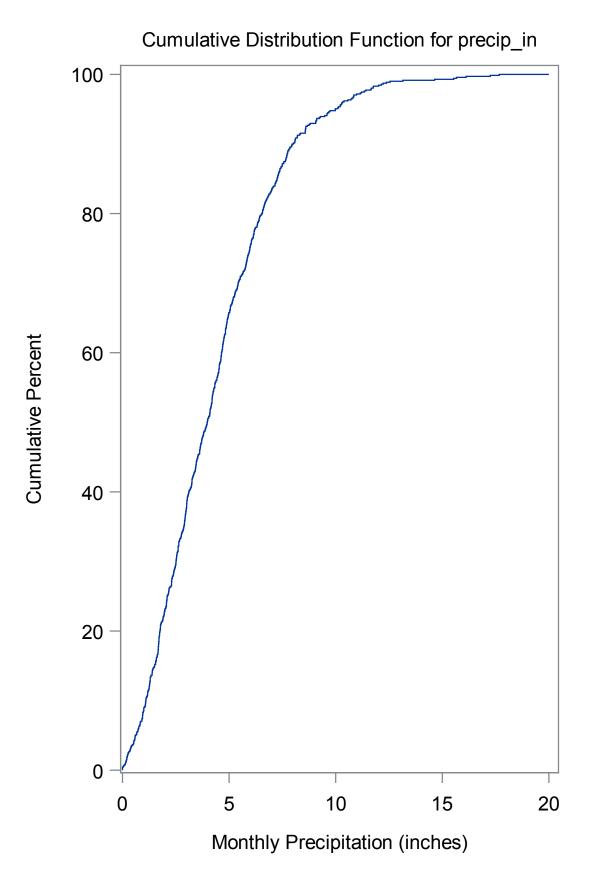
| Tests for Location: Mu0=0 |                   |          |          |        |  |  |
|---------------------------|-------------------|----------|----------|--------|--|--|
| Test                      | Statistic p Value |          |          |        |  |  |
| Student's t               | t                 | 40.05745 | Pr >  t  | <.0001 |  |  |
| Sign                      | м                 | 353.5    | Pr >=  M | <.0001 |  |  |
| Signed Rank               | s                 | 125139   | Pr >=  S | <.0001 |  |  |

| Quantiles (Definition 5) |          |  |  |  |
|--------------------------|----------|--|--|--|
| Level                    | Quantile |  |  |  |
| 100% Max                 | 17.670   |  |  |  |
| 99%                      | 12.550   |  |  |  |
| 95%                      | 9.990    |  |  |  |
| 90%                      | 7.990    |  |  |  |
| 75% Q3                   | 5.970    |  |  |  |
| 50% Median               | 3.975    |  |  |  |
| 25% Q1                   | 2.100    |  |  |  |
| 10%                      | 1.095    |  |  |  |
| 5%                       | 0.610    |  |  |  |
| 1%                       | 0.150    |  |  |  |
| 0% Min                   | 0.000    |  |  |  |


### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

Station=USC00091463 name=CAIRO, GA US

| Extreme Observations |           |         |      |  |
|----------------------|-----------|---------|------|--|
| Low                  | est       | Highest |      |  |
| Value                | Value Obs |         | Obs  |  |
| 0.00                 | 2243      | 15.54   | 1419 |  |
| 0.00                 | 1606      | 15.67   | 2058 |  |
| 0.00                 | 1582      | 16.12   | 1423 |  |
| 0.03                 | 2169      | 17.25   | 1933 |  |
| 0.06                 | 1571      | 17.67   | 2203 |  |


| Missing Values   |            |         |                |  |
|------------------|------------|---------|----------------|--|
|                  | Percent Of |         |                |  |
| Missing<br>Value | Count      | All Obs | Missing<br>Obs |  |
|                  | 214        | 23.16   | 100.00         |  |

Station=USC00091463 name=CAIRO, GA US



## Distribution of precip\_in

Station=USC00091463 name=CAIRO, GA US



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

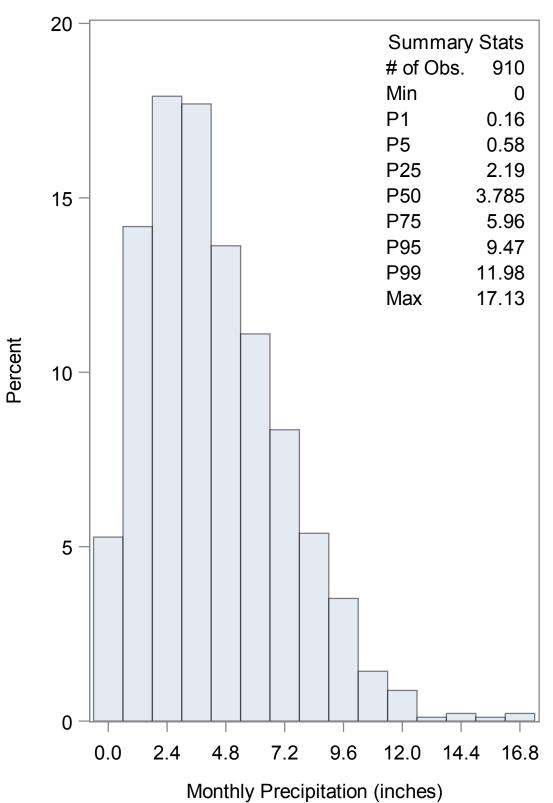
Station=USC00091500 name=CAMILLA 3 SE, GA US

| Moments         |            |                  |            |  |
|-----------------|------------|------------------|------------|--|
| N               | 910        | Sum Weights      | 910        |  |
| Mean            | 4.30568132 | Sum Observations | 3918.17    |  |
| Std Deviation   | 2.7723382  | Variance         | 7.68585911 |  |
| Skewness        | 0.89276005 | Kurtosis         | 0.96551854 |  |
| Uncorrected SS  | 23856.8373 | Corrected SS     | 6986.44593 |  |
| Coeff Variation | 64.3879098 | Std Error Mean   | 0.09190212 |  |

|                      | Basic Statistical Measures |                     |          |  |  |
|----------------------|----------------------------|---------------------|----------|--|--|
| Location Variability |                            |                     |          |  |  |
| Mean                 | 4.305681                   | Std Deviation       | 2.77234  |  |  |
| Median               | 3.785000                   | Variance            | 7.68586  |  |  |
| Mode                 | 0.000000                   | Range               | 17.13000 |  |  |
|                      |                            | Interquartile Range | 3.77000  |  |  |

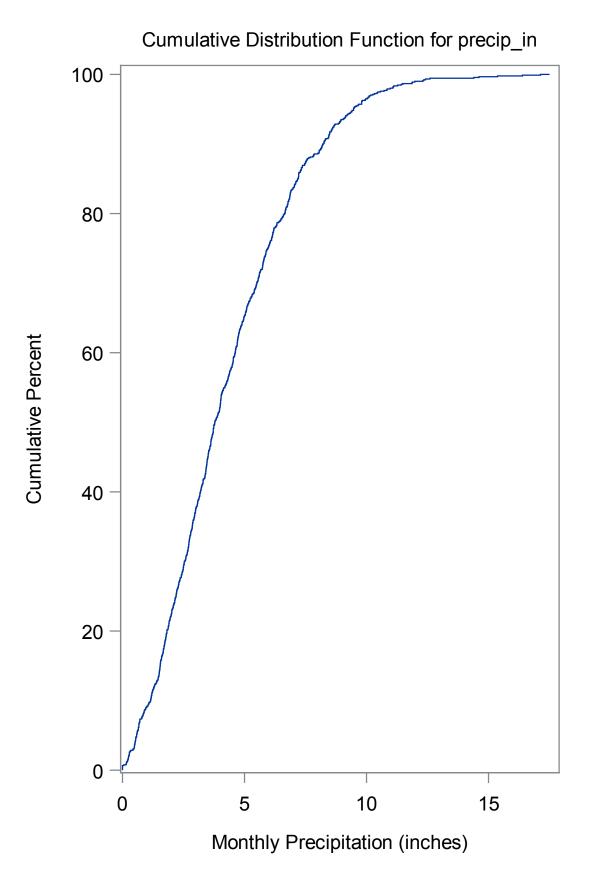
| Tests for Location: Mu0=0 |                   |          |          |        |  |  |
|---------------------------|-------------------|----------|----------|--------|--|--|
| Test                      | Statistic p Value |          |          |        |  |  |
| Student's t               | t                 | 46.85073 | Pr >  t  | <.0001 |  |  |
| Sign                      | м                 | 452      | Pr >=  M | <.0001 |  |  |
| Signed Rank               | s                 | 204530   | Pr >=  S | <.0001 |  |  |

| Quantiles (Definition 5) |          |  |  |  |
|--------------------------|----------|--|--|--|
| Level                    | Quantile |  |  |  |
| 100% Max                 | 17.130   |  |  |  |
| 99%                      | 11.980   |  |  |  |
| 95%                      | 9.470    |  |  |  |
| 90%                      | 8.225    |  |  |  |
| 75% Q3                   | 5.960    |  |  |  |
| 50% Median               | 3.785    |  |  |  |
| 25% Q1                   | 2.190    |  |  |  |
| 10%                      | 1.150    |  |  |  |
| 5%                       | 0.580    |  |  |  |
| 1%                       | 0.160    |  |  |  |
| 0% Min                   | 0.000    |  |  |  |


### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

Station=USC00091500 name=CAMILLA 3 SE, GA US

| Extreme Observations |           |       |      |  |
|----------------------|-----------|-------|------|--|
| Low                  | rest      | High  | nest |  |
| Value                | Value Obs |       | Obs  |  |
| 0                    | 3053      | 14.40 | 2949 |  |
| 0                    | 2818      | 14.61 | 3122 |  |
| 0                    | 2710      | 15.37 | 2575 |  |
| 0                    | 2530      | 16.39 | 3128 |  |
| 0                    | 2506      | 17.13 | 2857 |  |


| Missing Values   |       |         |                |  |
|------------------|-------|---------|----------------|--|
| Percent Of       |       |         |                |  |
| Missing<br>Value | Count | All Obs | Missing<br>Obs |  |
|                  | 14    | 1.52    | 100.00         |  |

Station=USC00091500 name=CAMILLA 3 SE, GA US



Distribution of precip\_in

Station=USC00091500 name=CAMILLA 3 SE, GA US



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

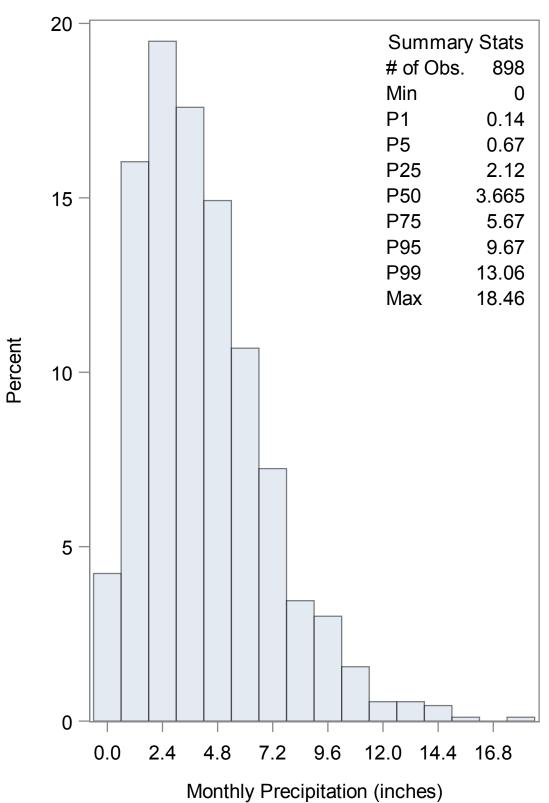
Station=USC00096087 name=MOULTRIE 2 ESE, GA US

| Moments         |            |                  |            |  |  |
|-----------------|------------|------------------|------------|--|--|
| N               | 898        | Sum Weights      | 898        |  |  |
| Mean            | 4.15339644 | Sum Observations | 3729.75    |  |  |
| Std Deviation   | 2.7533987  | Variance         | 7.58120439 |  |  |
| Skewness        | 1.09251406 | Kurtosis         | 1.63440538 |  |  |
| Uncorrected SS  | 22291.4707 | Corrected SS     | 6800.34034 |  |  |
| Coeff Variation | 66.2927014 | Std Error Mean   | 0.0918821  |  |  |

| Basic Statistical Measures |          |                     |          |  |
|----------------------------|----------|---------------------|----------|--|
| Loc                        | ation    | Variability         |          |  |
| Mean                       | 4.153396 | Std Deviation       | 2.75340  |  |
| Median                     | 3.665000 | Variance            | 7.58120  |  |
| Mode                       | 3.330000 | Range               | 18.46000 |  |
|                            |          | Interquartile Range | 3.55000  |  |

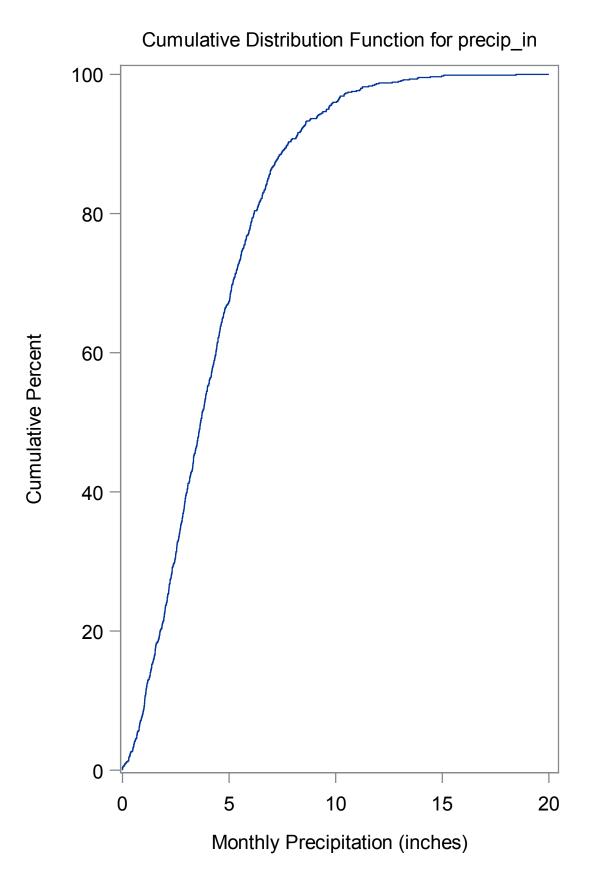
| Tests for Location: Mu0=0 |                   |        |          |        |  |
|---------------------------|-------------------|--------|----------|--------|--|
| Test                      | Statistic p Value |        |          |        |  |
| Student's t               | t 45.20354        |        | Pr >  t  | <.0001 |  |
| Sign                      | м                 | 447.5  | Pr >=  M | <.0001 |  |
| Signed Rank               | s                 | 200480 | Pr >=  S | <.0001 |  |

| Quantiles (Definition 5) |          |  |  |
|--------------------------|----------|--|--|
| Level                    | Quantile |  |  |
| 100% Max                 | 18.460   |  |  |
| 99%                      | 13.060   |  |  |
| 95%                      | 9.670    |  |  |
| 90%                      | 7.760    |  |  |
| 75% Q3                   | 5.670    |  |  |
| 50% Median               | 3.665    |  |  |
| 25% Q1                   | 2.120    |  |  |
| 10%                      | 1.040    |  |  |
| 5%                       | 0.670    |  |  |
| 1%                       | 0.140    |  |  |
| 0% Min                   | 0.000    |  |  |


### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

Station=USC00096087 name=MOULTRIE 2 ESE, GA US

| Extr  | eme Ob | oservatio | ons  |  |
|-------|--------|-----------|------|--|
| Low   | est    | Highest   |      |  |
| Value | Obs    | Value     | Obs  |  |
| 0.00  | 3977   | 13.87     | 3897 |  |
| 0.00  | 3454   | 14.44     | 3605 |  |
| 0.00  | 3214   | 14.97     | 3873 |  |
| 0.01  | 3430   | 15.07     | 3474 |  |
| 0.03  | 3742   | 18.46     | 3781 |  |


| Missing Values   |       |            |                |  |
|------------------|-------|------------|----------------|--|
|                  |       | Percent Of |                |  |
| Missing<br>Value | Count | All Obs    | Missing<br>Obs |  |
|                  | 26    | 2.81       | 100.00         |  |

Station=USC00096087 name=MOULTRIE 2 ESE, GA US



Distribution of precip\_in

Station=USC00096087 name=MOULTRIE 2 ESE, GA US



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

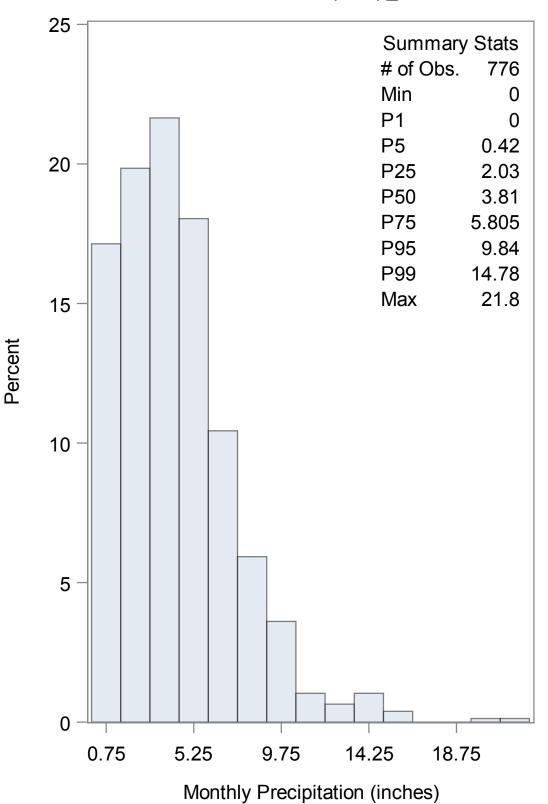
Station=USC00097276 name=QUITMAN 2 NW, GA US

| Moments         |            |                  |            |  |  |
|-----------------|------------|------------------|------------|--|--|
| N               | 776        | Sum Weights      | 776        |  |  |
| Mean            | 4.2968299  | Sum Observations | 3334.34    |  |  |
| Std Deviation   | 3.03876953 | Variance         | 9.23412026 |  |  |
| Skewness        | 1.29389991 | Kurtosis         | 3.04624565 |  |  |
| Uncorrected SS  | 21483.535  | Corrected SS     | 7156.4432  |  |  |
| Coeff Variation | 70.7211969 | Std Error Mean   | 0.10908547 |  |  |

| Basic Statistical Measures |          |                     |          |  |
|----------------------------|----------|---------------------|----------|--|
| Location Variability       |          |                     |          |  |
| Mean                       | 4.296830 | Std Deviation       | 3.03877  |  |
| Median                     | 3.810000 | Variance            | 9.23412  |  |
| Mode                       | 0.000000 | Range               | 21.80000 |  |
|                            |          | Interquartile Range | 3.77500  |  |

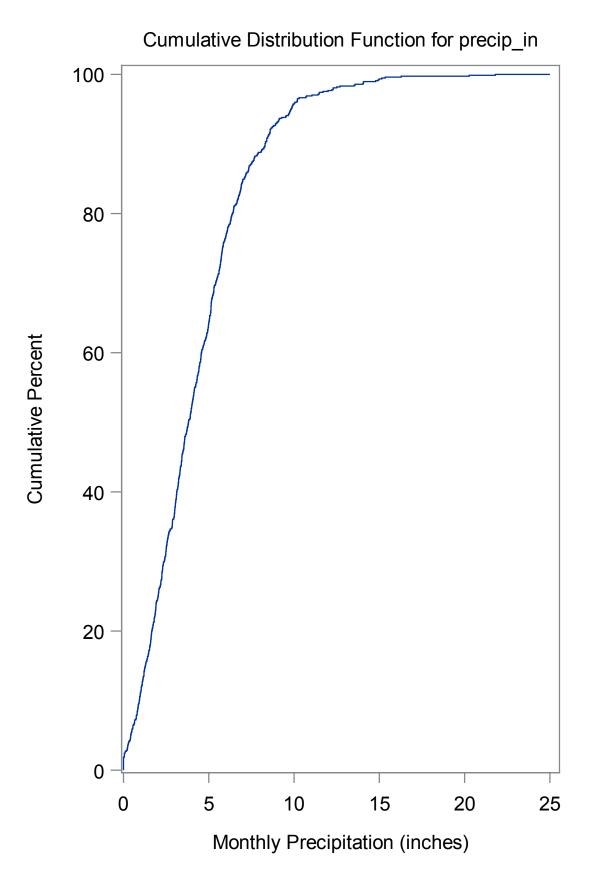
| Tests for Location: Mu0=0 |                   |          |          |        |  |
|---------------------------|-------------------|----------|----------|--------|--|
| Test                      | Statistic p Value |          |          |        |  |
| Student's t               | t 39.38957        |          | Pr >  t  | <.0001 |  |
| Sign                      | м                 | 381      | Pr >=  M | <.0001 |  |
| Signed Rank               | s                 | 145351.5 | Pr >=  S | <.0001 |  |

| Quantiles (Definition 5) |          |  |  |
|--------------------------|----------|--|--|
| Level                    | Quantile |  |  |
| 100% Max                 | 21.800   |  |  |
| 99%                      | 14.780   |  |  |
| 95%                      | 9.840    |  |  |
| 90%                      | 8.300    |  |  |
| 75% Q3                   | 5.805    |  |  |
| 50% Median               | 3.810    |  |  |
| 25% Q1                   | 2.030    |  |  |
| 10%                      | 0.930    |  |  |
| 5%                       | 0.420    |  |  |
| 1%                       | 0.000    |  |  |
| 0% Min                   | 0.000    |  |  |


### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

### Station=USC00097276 name=QUITMAN 2 NW, GA US

| Extr   | eme Ob | oservatio | ons  |
|--------|--------|-----------|------|
| Lowest |        | Highest   |      |
| Value  | Obs    | Value     | Obs  |
| 0      | 4942   | 15.15     | 4830 |
| 0      | 4913   | 15.35     | 4916 |
| 0      | 4899   | 16.28     | 4171 |
| 0      | 4894   | 20.27     | 4797 |
| 0      | 4822   | 21.80     | 4705 |


| Missing Values   |       |            |                |  |
|------------------|-------|------------|----------------|--|
|                  |       | Percent Of |                |  |
| Missing<br>Value | Count | All Obs    | Missing<br>Obs |  |
|                  | 76    | 8.92       | 100.00         |  |

Station=USC00097276 name=QUITMAN 2 NW, GA US



Distribution of precip\_in

Station=USC00097276 name=QUITMAN 2 NW, GA US



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

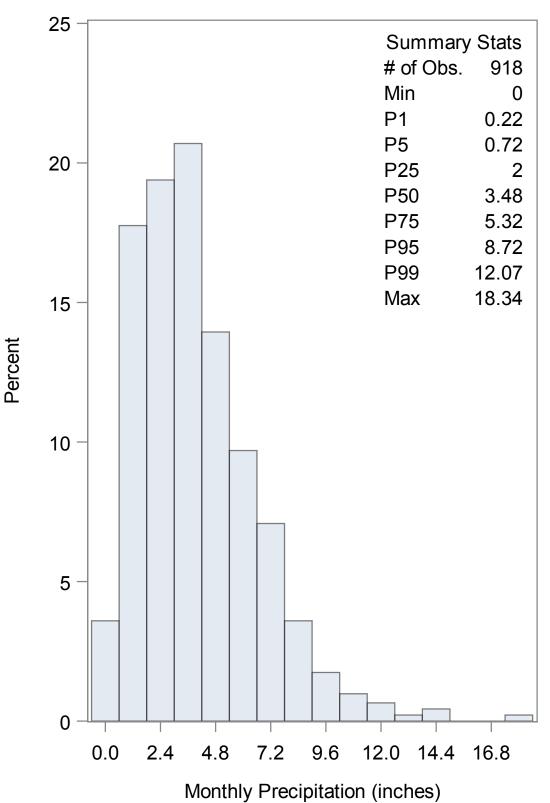
Station=USC00098703 name=TIFTON, GA US

| Moments         |            |                  |            |  |  |
|-----------------|------------|------------------|------------|--|--|
| N               | 918        | Sum Weights      | 918        |  |  |
| Mean            | 3.95491285 | Sum Observations | 3630.61    |  |  |
| Std Deviation   | 2.6055678  | Variance         | 6.78898358 |  |  |
| Skewness        | 1.26149839 | Kurtosis         | 2.69402168 |  |  |
| Uncorrected SS  | 20584.2441 | Corrected SS     | 6225.49794 |  |  |
| Coeff Variation | 65.8818007 | Std Error Mean   | 0.08599655 |  |  |

| Basic Statistical Measures |          |                     |          |  |
|----------------------------|----------|---------------------|----------|--|
| Loc                        | ation    | Variability         |          |  |
| Mean                       | 3.954913 | Std Deviation       | 2.60557  |  |
| Median                     | 3.480000 | Variance            | 6.78898  |  |
| Mode                       | 4.170000 | Range               | 18.34000 |  |
|                            |          | Interquartile Range | 3.32000  |  |

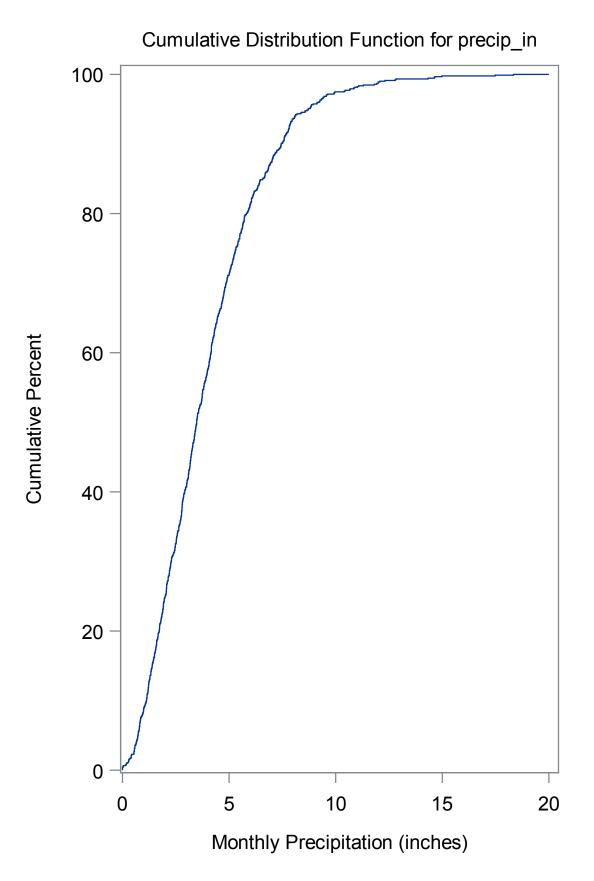
| Tests for Location: Mu0=0 |                   |          |          |        |  |
|---------------------------|-------------------|----------|----------|--------|--|
| Test                      | Statistic p Value |          |          |        |  |
| Student's t               | t                 | 45.9892  | Pr >  t  | <.0001 |  |
| Sign                      | м                 | 457      | Pr >=  M | <.0001 |  |
| Signed Rank               | s                 | 209077.5 | Pr >=  S | <.0001 |  |

| Quantiles (Definition 5) |          |  |  |
|--------------------------|----------|--|--|
| Level                    | Quantile |  |  |
| 100% Max                 | 18.34    |  |  |
| 99%                      | 12.07    |  |  |
| 95%                      | 8.72     |  |  |
| 90%                      | 7.45     |  |  |
| 75% Q3                   | 5.32     |  |  |
| 50% Median               | 3.48     |  |  |
| 25% Q1                   | 2.00     |  |  |
| 10%                      | 1.12     |  |  |
| 5%                       | 0.72     |  |  |
| 1%                       | 0.22     |  |  |
| 0% Min                   | 0.00     |  |  |


### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

Station=USC00098703 name=TIFTON, GA US

| Extreme Observations |           |         |      |  |  |
|----------------------|-----------|---------|------|--|--|
| Low                  | est       | Highest |      |  |  |
| Value Obs            |           | Value   | Obs  |  |  |
| 0.00                 | 5518      | 14.62   | 5557 |  |  |
| 0.00                 | 0.00 5230 |         | 5011 |  |  |
| 0.00                 | 5206      | 14.98   | 5816 |  |  |
| 0.00                 | 4990      | 17.48   | 5822 |  |  |
| 0.03                 | 5867      | 18.34   | 5721 |  |  |


| Missing Values   |       |            |                |  |
|------------------|-------|------------|----------------|--|
|                  |       | Percent Of |                |  |
| Missing<br>Value | Count | All Obs    | Missing<br>Obs |  |
|                  | 6     | 0.65       | 100.00         |  |

Station=USC00098703 name=TIFTON, GA US



Distribution of precip\_in

Station=USC00098703 name=TIFTON, GA US



#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))

#### Station=USW00093805 name=TALLAHASSEE REGIONAL AIRPORT, FL US

| Moments         |            |                  |            |  |  |
|-----------------|------------|------------------|------------|--|--|
| Ν               | 855        | Sum Weights      | 855        |  |  |
| Mean            | 5.15412865 | Sum Observations | 4406.78    |  |  |
| Std Deviation   | 3.51838213 | Variance         | 12.3790128 |  |  |
| Skewness        | 1.09819169 | Kurtosis         | 1.5272008  |  |  |
| Uncorrected SS  | 33284.788  | Corrected SS     | 10571.6769 |  |  |
| Coeff Variation | 68.2633741 | Std Error Mean   | 0.12032613 |  |  |

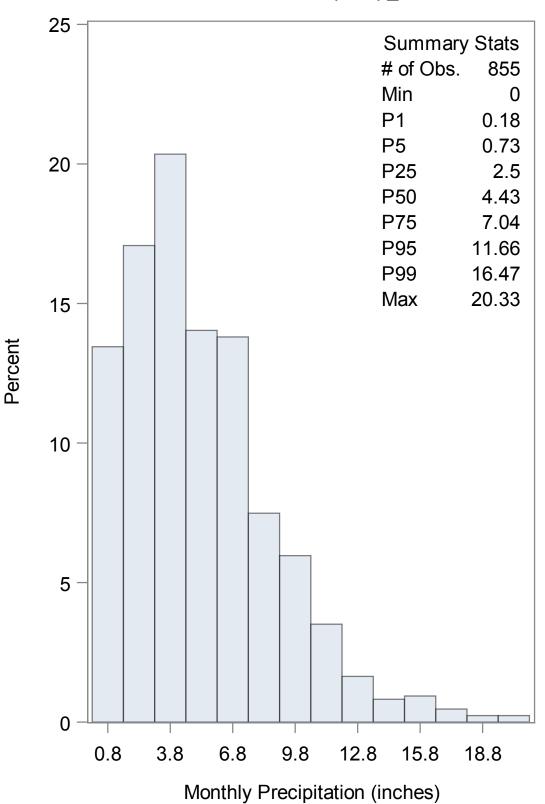
| Basic Statistical Measures |          |                     |          |  |
|----------------------------|----------|---------------------|----------|--|
| Loc                        | ation    | Variability         |          |  |
| Mean                       | 5.154129 | Std Deviation       | 3.51838  |  |
| Median                     | 4.430000 | Variance            | 12.37901 |  |
| <b>Mode</b> 1.440000       |          | Range               | 20.33000 |  |
|                            |          | Interquartile Range | 4.54000  |  |

### Note: The mode displayed is the smallest of 2 modes with a count of 5.

| Tests for Location: Mu0=0 |                   |          |          |        |  |  |
|---------------------------|-------------------|----------|----------|--------|--|--|
| Test                      | Statistic p Value |          |          |        |  |  |
| Student's t               | t                 | 42.83466 | Pr >  t  | <.0001 |  |  |
| Sign                      | <b>M</b> 426      |          | Pr >=  M | <.0001 |  |  |
| Signed Rank               | s                 | 181689   | Pr >=  S | <.0001 |  |  |

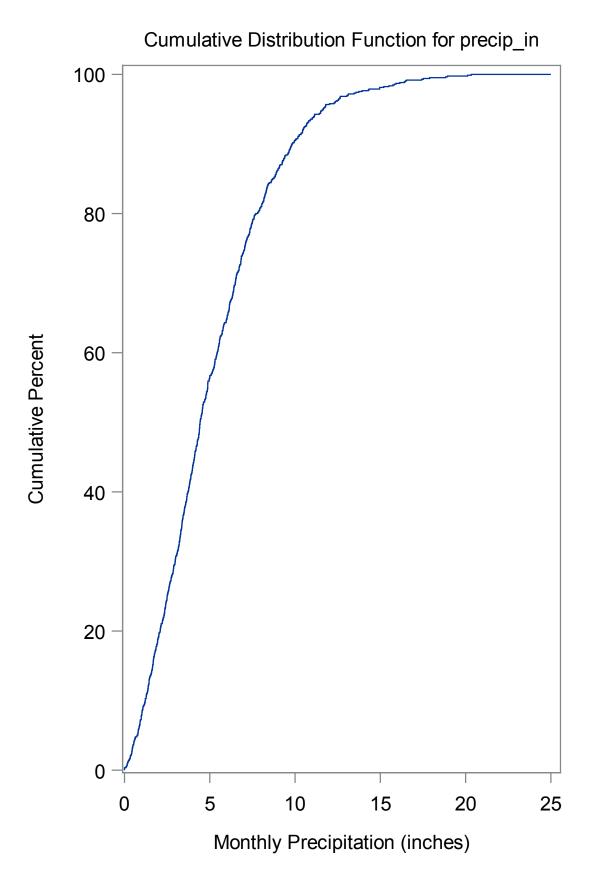
| Quantiles (Definition 5) |          |  |  |  |
|--------------------------|----------|--|--|--|
| Level                    | Quantile |  |  |  |
| 100% Max                 | 20.33    |  |  |  |
| 99%                      | 16.47    |  |  |  |
| 95%                      | 11.66    |  |  |  |
| 90%                      | 9.83     |  |  |  |
| 75% Q3                   | 7.04     |  |  |  |
| 50% Median               | 4.43     |  |  |  |
| 25% Q1                   | 2.50     |  |  |  |
| 10%                      | 1.22     |  |  |  |
| 5%                       | 0.73     |  |  |  |
| 1%                       | 0.18     |  |  |  |
| 0% Min                   | 0.00     |  |  |  |

#### The UNIVARIATE Procedure Variable: precip\_in (Monthly Precipitation (inches))


Station=USW00093805 name=TALLAHASSEE REGIONAL AIRPORT, FL US

| Extreme Observations |           |       |      |  |  |
|----------------------|-----------|-------|------|--|--|
| Low                  | Lowest    |       | nest |  |  |
| Value Obs            |           | Value | Obs  |  |  |
| 0.00                 | 6418      | 17.89 | 5947 |  |  |
| 0.00                 | 0.00 6149 |       | 6199 |  |  |
| 0.00                 | 6106      | 18.94 | 6457 |  |  |
| 0.08                 | 6634      | 20.12 | 6139 |  |  |
| 0.11                 | 6237      | 20.33 | 6057 |  |  |

| Missing Values   |       |            |                |  |
|------------------|-------|------------|----------------|--|
|                  |       | Percent Of |                |  |
| Missing<br>Value | Count | All Obs    | Missing<br>Obs |  |
|                  | 45    | 5.00       | 100.00         |  |


#### The UNIVARIATE Procedure

Station=USW00093805 name=TALLAHASSEE REGIONAL AIRPORT, FL US



Distribution of precip\_in

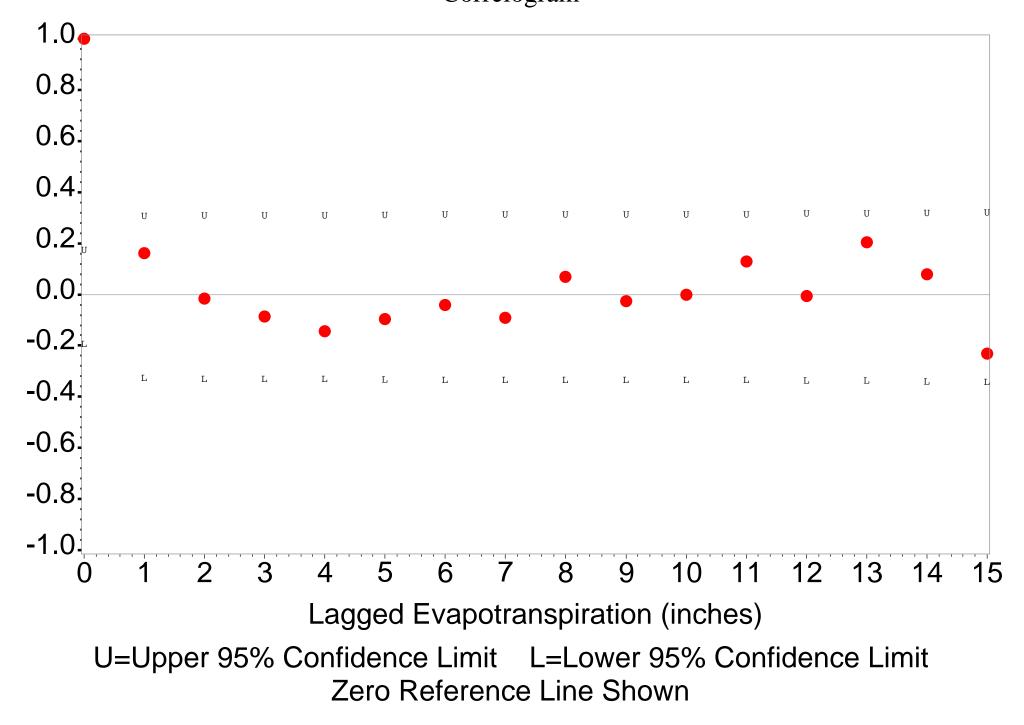
Station=USW00093805 name=TALLAHASSEE REGIONAL AIRPORT, FL US



# US1GATH0004 Evapotranspiration Trends Autocorrelation Statistics

| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.102             | 0.204          | -0.204         |
| 1                                        | 0.105       | 0.177             | 0.354          | -0.354         |
| 2                                        | -0.086      | 0.177             | 0.355          | -0.355         |
| 3                                        | 0.005       | 0.178             | 0.356          | -0.356         |
| 4                                        | -0.068      | 0.178             | 0.356          | -0.356         |
| 5                                        | -0.045      | 0.178             | 0.356          | -0.356         |
| 6                                        | -0.019      | 0.178             | 0.356          | -0.356         |
| 7                                        | -0.124      | 0.178             | 0.357          | -0.357         |
| 8                                        | 0.172       | 0.179             | 0.358          | -0.358         |
| 9                                        | 0.137       | 0.181             | 0.362          | -0.362         |
| 10                                       | -0.127      | 0.182             | 0.364          | -0.364         |
| 11                                       | 0.093       | 0.183             | 0.366          | -0.366         |
| 12                                       | 0.148       | 0.183             | 0.367          | -0.367         |
| 13                                       | 0.100       | 0.185             | 0.369          | -0.369         |
| 14                                       | -0.051      | 0.185             | 0.370          | -0.370         |
| 15                                       | -0.047      | 0.185             | 0.371          | -0.371         |

#### Correlation Correlogram 1.0 0.8 0.6 0.4 U U U U U U U U U U U U 0.2 0.0 -0.2 -0.4 L L L L L L $\mathbf{L}$ L L L -0.6 -0.8 -1.0 5 8 12 2 3 4 9 10 13 6 11 7 14 15 1 0 Lagged Evapotranspiration (inches) U=Upper 95% Confidence Limit L=Lower 95% Confidence Limit Zero Reference Line Shown


US1GATH0004 Evapotranspiration Trends

# USC00085880 Evapotranspiration Trends Autocorrelation Statistics

| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.091             | 0.183          | -0.183         |
| 1                                        | 0.162       | 0.158             | 0.316          | -0.316         |
| 2                                        | -0.016      | 0.159             | 0.319          | -0.319         |
| 3                                        | -0.087      | 0.160             | 0.319          | -0.319         |
| 4                                        | -0.145      | 0.160             | 0.320          | -0.320         |
| 5                                        | -0.097      | 0.161             | 0.322          | -0.322         |
| 6                                        | -0.041      | 0.161             | 0.323          | -0.323         |
| 7                                        | -0.090      | 0.162             | 0.323          | -0.323         |
| 8                                        | 0.068       | 0.162             | 0.324          | -0.324         |
| 9                                        | -0.026      | 0.162             | 0.324          | -0.324         |
| 10                                       | -0.002      | 0.162             | 0.325          | -0.325         |
| 11                                       | 0.129       | 0.162             | 0.325          | -0.325         |
| 12                                       | -0.005      | 0.163             | 0.326          | -0.326         |
| 13                                       | 0.204       | 0.163             | 0.326          | -0.326         |
| 14                                       | 0.078       | 0.165             | 0.330          | -0.330         |
| 15                                       | -0.232      | 0.166             | 0.331          | -0.331         |

# USC00085880 Evapotranspiration Trends Correlogram

Correlation



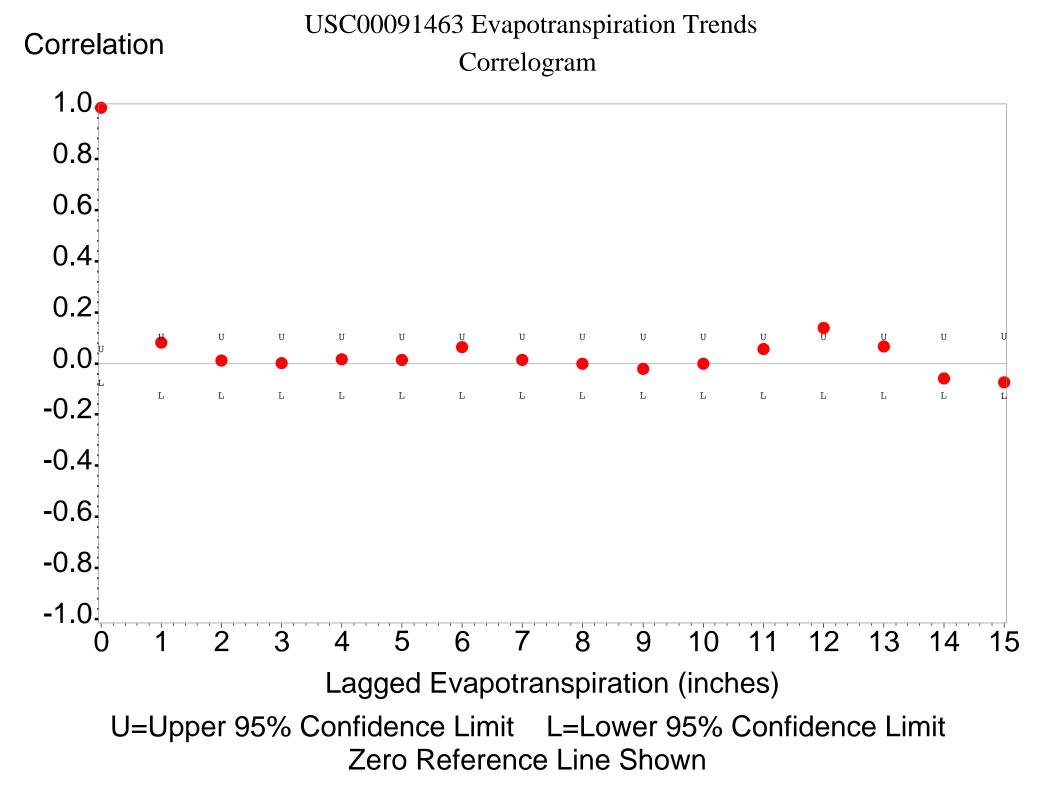
# USC00087025 Evapotranspiration Trends Autocorrelation Statistics

| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.033             | 0.066          | -0.066         |
| 1                                        | 0.173       | 0.057             | 0.114          | -0.114         |
| 2                                        | 0.048       | 0.058             | 0.115          | -0.115         |
| 3                                        | -0.108      | 0.058             | 0.115          | -0.115         |
| 4                                        | -0.095      | 0.058             | 0.116          | -0.116         |
| 5                                        | -0.077      | 0.058             | 0.116          | -0.116         |
| 6                                        | 0.005       | 0.058             | 0.116          | -0.116         |
| 7                                        | -0.022      | 0.058             | 0.116          | -0.116         |
| 8                                        | -0.104      | 0.058             | 0.116          | -0.116         |
| 9                                        | -0.117      | 0.058             | 0.117          | -0.117         |
| 10                                       | -0.018      | 0.059             | 0.117          | -0.117         |
| 11                                       | 0.140       | 0.059             | 0.117          | -0.117         |
| 12                                       | 0.282       | 0.059             | 0.118          | -0.118         |
| 13                                       | 0.164       | 0.060             | 0.121          | -0.121         |
| 14                                       | -0.015      | 0.061             | 0.122          | -0.122         |
| 15                                       | -0.094      | 0.061             | 0.122          | -0.122         |

#### Correlation Correlogram 1.0 0.8 0.6 0.4 0.2 **•** U U U U U U U U U U U U U 0.0 L L L L L L Τ. τ. L -0.2 -0.4 -0.6 -0.8 -1.0 5 8 2 3 4 6 9 10 12 13 14 11 15 1 7 0 Lagged Evapotranspiration (inches) U=Upper 95% Confidence Limit L=Lower 95% Confidence Limit Zero Reference Line Shown

USC00087025 Evapotranspiration Trends

# USC00087869 Evapotranspiration Trends Autocorrelation Statistics


| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.075             | 0.149          | -0.149         |
| 1                                        | 0.115       | 0.129             | 0.258          | -0.258         |
| 2                                        | -0.013      | 0.130             | 0.259          | -0.259         |
| 3                                        | -0.052      | 0.130             | 0.259          | -0.259         |
| 4                                        | -0.019      | 0.130             | 0.260          | -0.260         |
| 5                                        | 0.030       | 0.130             | 0.260          | -0.260         |
| 6                                        | 0.165       | 0.130             | 0.260          | -0.260         |
| 7                                        | 0.073       | 0.131             | 0.262          | -0.262         |
| 8                                        | 0.173       | 0.131             | 0.262          | -0.262         |
| 9                                        | -0.007      | 0.132             | 0.265          | -0.265         |
| 10                                       | 0.000       | 0.132             | 0.265          | -0.265         |
| 11                                       | 0.078       | 0.132             | 0.265          | -0.265         |
| 12                                       | 0.137       | 0.133             | 0.265          | -0.265         |
| 13                                       | 0.151       | 0.134             | 0.267          | -0.267         |
| 14                                       | 0.024       | 0.134             | 0.269          | -0.269         |
| 15                                       | -0.147      | 0.135             | 0.269          | -0.269         |

#### Correlation Correlogram 1.0 0.8 0.6 0.4 0.2 U U U U U U U U U 0.0 -0.2 L L L L L L L L L L L L -0.4 -0.6 -0.8 -1.0 5 8 2 3 4 9 10 12 13 14 6 11 15 7 1 0 Lagged Evapotranspiration (inches) U=Upper 95% Confidence Limit L=Lower 95% Confidence Limit Zero Reference Line Shown

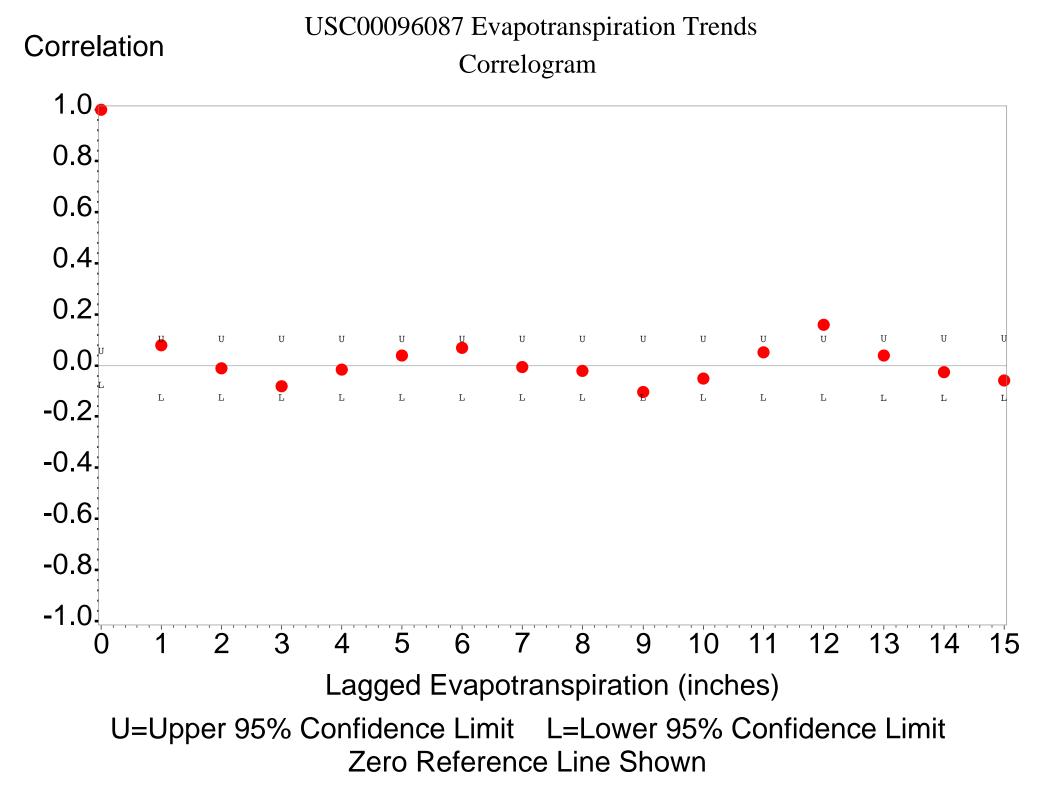
USC00087869 Evapotranspiration Trends

# USC00091463 Evapotranspiration Trends Autocorrelation Statistics

| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.033             | 0.066          | -0.066         |
| 1                                        | 0.081       | 0.057             | 0.114          | -0.114         |
| 2                                        | 0.011       | 0.057             | 0.114          | -0.114         |
| 3                                        | 0.002       | 0.057             | 0.114          | -0.114         |
| 4                                        | 0.016       | 0.057             | 0.114          | -0.114         |
| 5                                        | 0.013       | 0.057             | 0.114          | -0.114         |
| 6                                        | 0.063       | 0.057             | 0.114          | -0.114         |
| 7                                        | 0.013       | 0.057             | 0.114          | -0.114         |
| 8                                        | -0.002      | 0.057             | 0.114          | -0.114         |
| 9                                        | -0.020      | 0.057             | 0.114          | -0.114         |
| 10                                       | 0.000       | 0.057             | 0.114          | -0.114         |
| 11                                       | 0.056       | 0.057             | 0.114          | -0.114         |
| 12                                       | 0.139       | 0.057             | 0.115          | -0.115         |
| 13                                       | 0.067       | 0.058             | 0.115          | -0.115         |
| 14                                       | -0.058      | 0.058             | 0.115          | -0.115         |
| 15                                       | -0.073      | 0.058             | 0.116          | -0.116         |

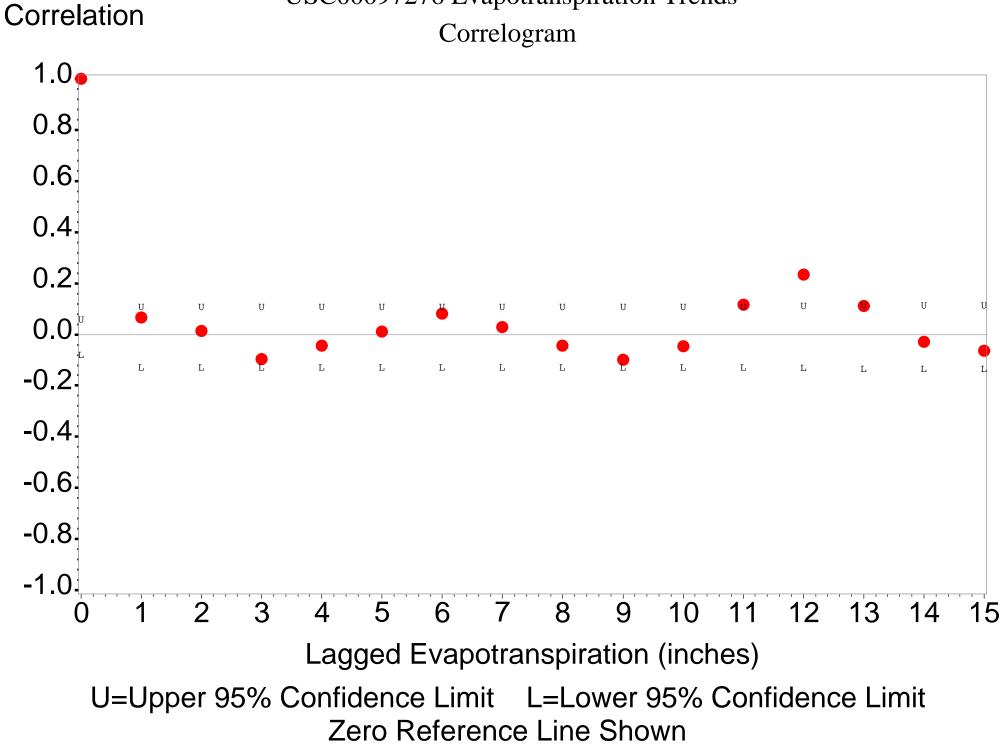


# USC00091500 Evapotranspiration Trends Autocorrelation Statistics


| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.033             | 0.066          | -0.066         |
| 1                                        | 0.057       | 0.057             | 0.114          | -0.114         |
| 2                                        | -0.008      | 0.057             | 0.114          | -0.114         |
| 3                                        | -0.049      | 0.057             | 0.114          | -0.114         |
| 4                                        | -0.020      | 0.057             | 0.114          | -0.114         |
| 5                                        | 0.009       | 0.057             | 0.114          | -0.114         |
| 6                                        | 0.026       | 0.057             | 0.114          | -0.114         |
| 7                                        | -0.024      | 0.057             | 0.114          | -0.114         |
| 8                                        | -0.003      | 0.057             | 0.114          | -0.114         |
| 9                                        | -0.077      | 0.057             | 0.114          | -0.114         |
| 10                                       | -0.022      | 0.057             | 0.114          | -0.114         |
| 11                                       | -0.005      | 0.057             | 0.114          | -0.114         |
| 12                                       | 0.146       | 0.057             | 0.114          | -0.114         |
| 13                                       | 0.061       | 0.058             | 0.115          | -0.115         |
| 14                                       | 0.005       | 0.058             | 0.115          | -0.115         |
| 15                                       | -0.031      | 0.058             | 0.115          | -0.115         |

#### Correlation Correlogram 1.0 0.8 0.6 0.4 0.2 U U U U U U U U U U U U U U 0.0 L L L L L L L L L L L T. L L -0.2 -0.4 -0.6 -0.8 -1.0 5 8 12 2 3 4 6 9 10 13 7 11 14 15 1 0 Lagged Evapotranspiration (inches) U=Upper 95% Confidence Limit L=Lower 95% Confidence Limit Zero Reference Line Shown

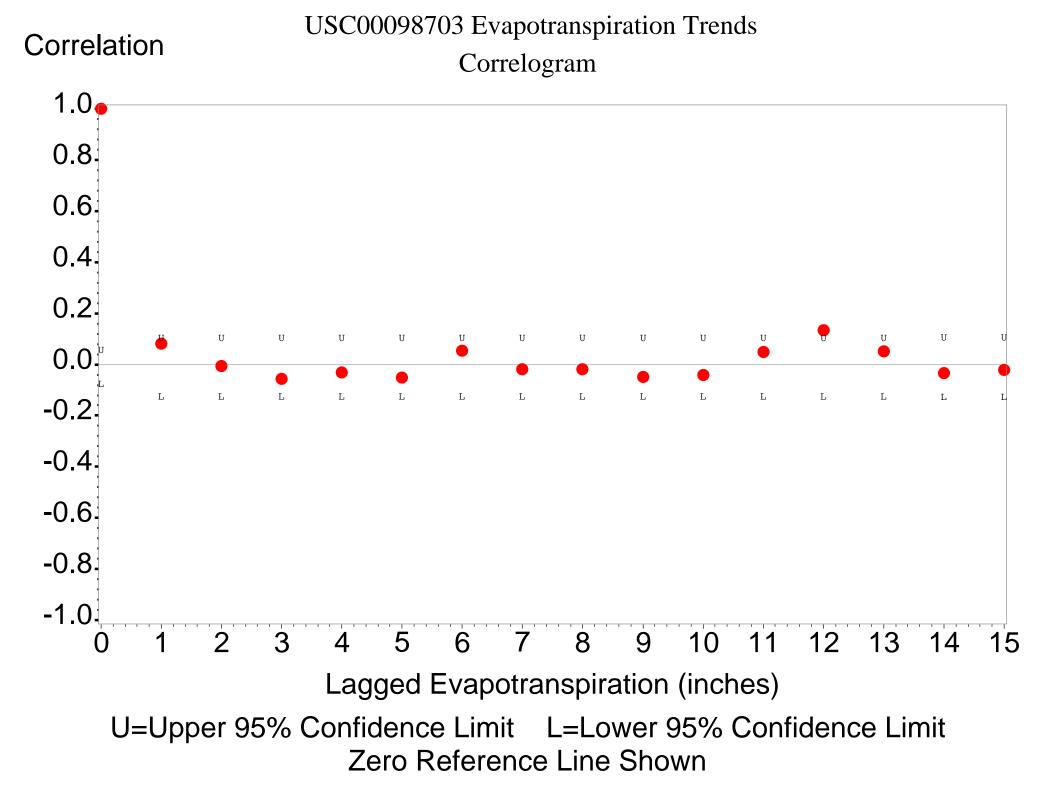
USC00091500 Evapotranspiration Trends


# USC00096087 Evapotranspiration Trends Autocorrelation Statistics

| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.033             | 0.066          | -0.066         |
| 1                                        | 0.080       | 0.057             | 0.114          | -0.114         |
| 2                                        | -0.011      | 0.057             | 0.114          | -0.114         |
| 3                                        | -0.080      | 0.057             | 0.114          | -0.114         |
| 4                                        | -0.015      | 0.057             | 0.114          | -0.114         |
| 5                                        | 0.039       | 0.057             | 0.114          | -0.114         |
| 6                                        | 0.068       | 0.057             | 0.115          | -0.115         |
| 7                                        | -0.006      | 0.057             | 0.115          | -0.115         |
| 8                                        | -0.022      | 0.057             | 0.115          | -0.115         |
| 9                                        | -0.103      | 0.057             | 0.115          | -0.115         |
| 10                                       | -0.051      | 0.058             | 0.115          | -0.115         |
| 11                                       | 0.052       | 0.058             | 0.115          | -0.115         |
| 12                                       | 0.160       | 0.058             | 0.115          | -0.115         |
| 13                                       | 0.039       | 0.058             | 0.116          | -0.116         |
| 14                                       | -0.025      | 0.058             | 0.116          | -0.116         |
| 15                                       | -0.058      | 0.058             | 0.116          | -0.116         |

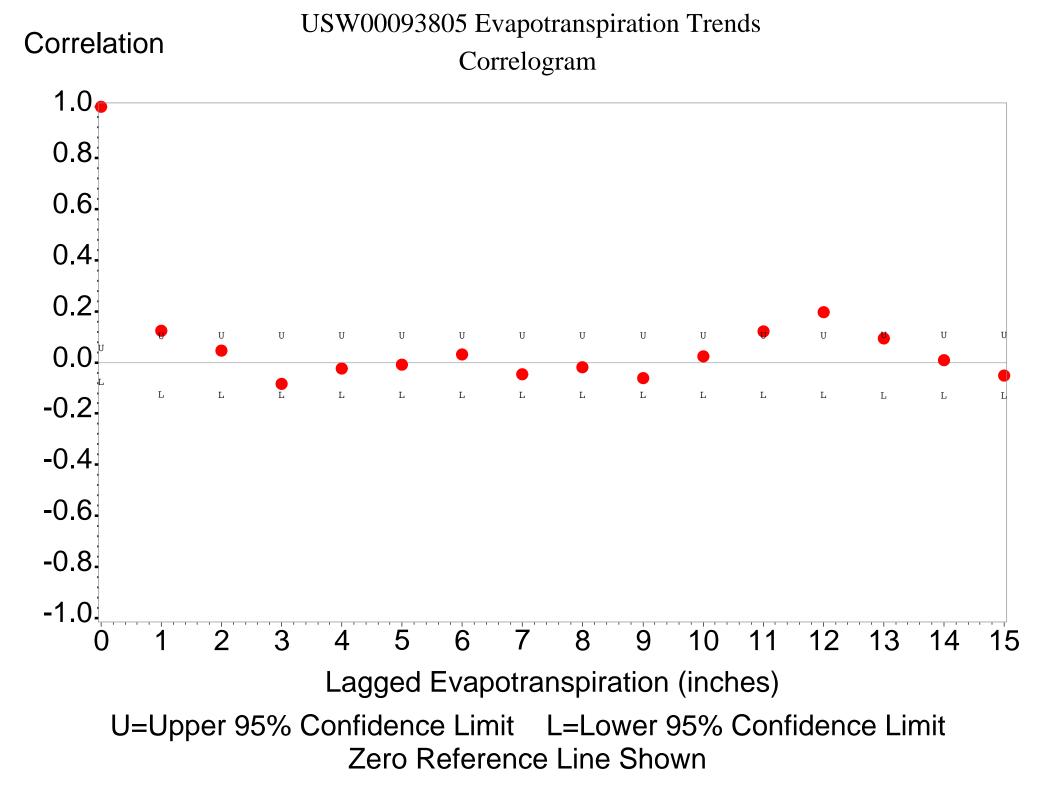


# USC00097276 Evapotranspiration Trends Autocorrelation Statistics

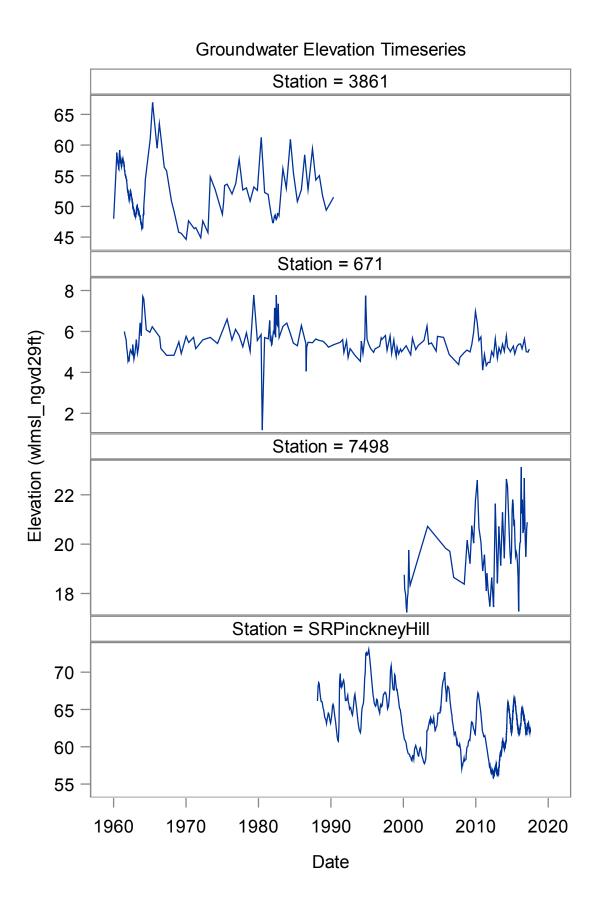

| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.034             | 0.069          | -0.069         |
| 1                                        | 0.067       | 0.059             | 0.119          | -0.119         |
| 2                                        | 0.014       | 0.059             | 0.119          | -0.119         |
| 3                                        | -0.095      | 0.059             | 0.119          | -0.119         |
| 4                                        | -0.043      | 0.060             | 0.119          | -0.119         |
| 5                                        | 0.011       | 0.060             | 0.119          | -0.119         |
| 6                                        | 0.081       | 0.060             | 0.119          | -0.119         |
| 7                                        | 0.029       | 0.060             | 0.120          | -0.120         |
| 8                                        | -0.044      | 0.060             | 0.120          | -0.120         |
| 9                                        | -0.098      | 0.060             | 0.120          | -0.120         |
| 10                                       | -0.047      | 0.060             | 0.120          | -0.120         |
| 11                                       | 0.116       | 0.060             | 0.120          | -0.120         |
| 12                                       | 0.235       | 0.060             | 0.121          | -0.121         |
| 13                                       | 0.112       | 0.061             | 0.123          | -0.123         |
| 14                                       | -0.029      | 0.062             | 0.123          | -0.123         |
| 15                                       | -0.064      | 0.062             | 0.123          | -0.123         |

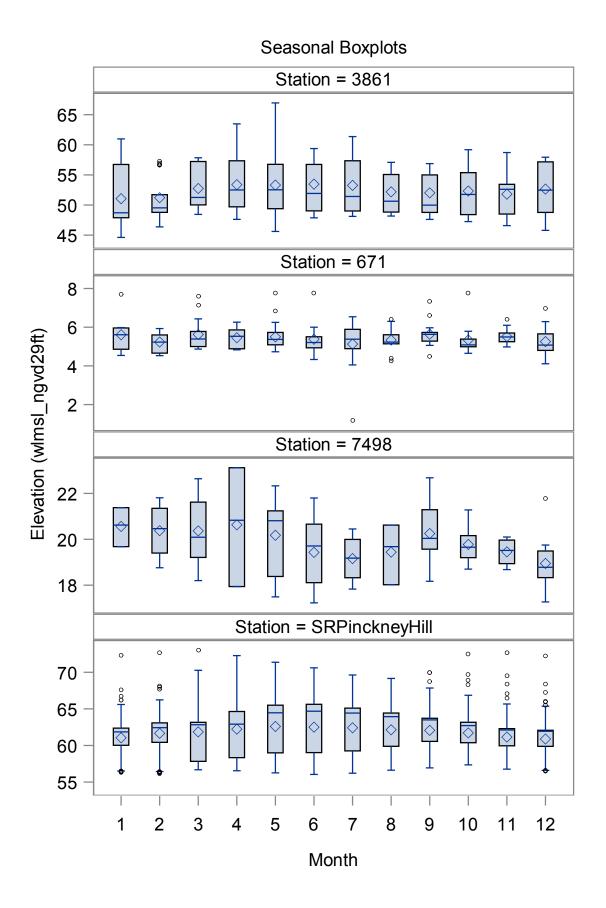


USC00097276 Evapotranspiration Trends


# USC00098703 Evapotranspiration Trends Autocorrelation Statistics

| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.033             | 0.066          | -0.066         |
| 1                                        | 0.081       | 0.057             | 0.114          | -0.114         |
| 2                                        | -0.005      | 0.057             | 0.114          | -0.114         |
| 3                                        | -0.055      | 0.057             | 0.114          | -0.114         |
| 4                                        | -0.030      | 0.057             | 0.114          | -0.114         |
| 5                                        | -0.050      | 0.057             | 0.114          | -0.114         |
| 6                                        | 0.053       | 0.057             | 0.114          | -0.114         |
| 7                                        | -0.018      | 0.057             | 0.115          | -0.115         |
| 8                                        | -0.019      | 0.057             | 0.115          | -0.115         |
| 9                                        | -0.049      | 0.057             | 0.115          | -0.115         |
| 10                                       | -0.040      | 0.057             | 0.115          | -0.115         |
| 11                                       | 0.049       | 0.057             | 0.115          | -0.115         |
| 12                                       | 0.134       | 0.057             | 0.115          | -0.115         |
| 13                                       | 0.051       | 0.058             | 0.115          | -0.115         |
| 14                                       | -0.034      | 0.058             | 0.116          | -0.116         |
| 15                                       | -0.022      | 0.058             | 0.116          | -0.116         |





# USW00093805 Evapotranspiration Trends Autocorrelation Statistics

| Lagged<br>Evapotranspiration<br>(inches) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                        | 1.000       | 0.033             | 0.067          | -0.067         |
| 1                                        | 0.123       | 0.058             | 0.115          | -0.115         |
| 2                                        | 0.047       | 0.058             | 0.116          | -0.116         |
| 3                                        | -0.083      | 0.058             | 0.116          | -0.116         |
| 4                                        | -0.024      | 0.058             | 0.116          | -0.116         |
| 5                                        | -0.009      | 0.058             | 0.116          | -0.116         |
| 6                                        | 0.032       | 0.058             | 0.116          | -0.116         |
| 7                                        | -0.045      | 0.058             | 0.116          | -0.116         |
| 8                                        | -0.018      | 0.058             | 0.117          | -0.117         |
| 9                                        | -0.062      | 0.058             | 0.117          | -0.117         |
| 10                                       | 0.023       | 0.058             | 0.117          | -0.117         |
| 11                                       | 0.121       | 0.058             | 0.117          | -0.117         |
| 12                                       | 0.197       | 0.059             | 0.117          | -0.117         |
| 13                                       | 0.093       | 0.059             | 0.119          | -0.119         |
| 14                                       | 0.009       | 0.060             | 0.119          | -0.119         |
| 15                                       | -0.051      | 0.060             | 0.119          | -0.119         |



# ATTACHMENT 6 GROUNDWATER DESCRIPTIVE STATISTICS AND PLOTS





| Obs | station        | Nobs | mindate    | maxdate    |
|-----|----------------|------|------------|------------|
| 1   | 3861           | 324  | 01/05/1960 | 05/15/1990 |
| 2   | 671            | 171  | 06/30/1961 | 05/22/2017 |
| 3   | 7498           | 70   | 02/17/2000 | 02/07/2017 |
| 4   | SRPinckneyHill | 2246 | 02/22/1988 | 07/17/2017 |

### Beginning and End Dates for Groundwater Stations

|      |   |   |   |   |   | Ν | lont | h |   |    |    |    |
|------|---|---|---|---|---|---|------|---|---|----|----|----|
|      | 1 | 2 | 3 | 4 | 5 | 6 | 7    | 8 | 9 | 10 | 11 | 12 |
| Year |   |   |   |   |   |   |      |   |   |    |    |    |
| 1960 | 1 |   |   |   |   | 4 | 6    | 5 | 6 | 6  | 6  | 6  |
| 1961 | 6 | 6 | 6 | 6 | 6 | 6 | 6    | 6 | 6 | 6  | 6  | 6  |
| 1962 | 5 | 6 | 5 | 5 | 6 | 6 | 6    | 6 | 6 | 6  | 5  | 2  |
| 1963 | 6 | 6 | 4 | 6 | 6 | 6 | 6    | 6 | 6 | 6  | 6  | 2  |
| 1964 | 5 | 6 | 1 |   | 5 |   |      |   |   |    |    |    |
| 1965 | 1 |   |   |   | 1 |   |      |   |   |    |    |    |
| 1966 | 1 |   |   | 1 |   |   | 1    |   |   |    |    | 1  |
| 1967 |   |   |   | 1 |   |   |      |   | • |    |    | 1  |
| 1968 |   | • |   |   | 1 |   | •    |   | • |    |    | 1  |
| 1969 |   |   |   |   | 1 |   |      |   | • |    |    |    |
| 1970 | 1 |   | • |   | 1 |   |      |   |   |    |    |    |
| 1971 |   | 1 | • |   | 1 |   |      |   |   |    |    |    |
| 1972 | 1 |   |   | 1 |   |   |      |   |   |    |    |    |
| 1973 | 1 |   |   |   | 1 |   |      |   |   |    |    |    |
| 1974 | 1 |   |   |   |   |   |      |   |   |    |    |    |
| 1975 | 1 |   | 1 | 1 |   |   |      |   | 1 |    |    |    |
| 1976 |   |   |   |   | 1 |   |      |   |   |    | 1  |    |
| 1977 |   |   |   |   | 1 |   |      |   |   |    | 1  |    |
| 1978 |   |   |   |   | 1 |   |      |   | • |    | 1  |    |
| 1979 |   |   |   |   | 1 |   |      |   | • |    | 1  |    |
| 1980 |   | • |   |   | 1 |   | •    |   | • |    | 1  |    |
| 1981 |   | • |   |   | 1 |   | 1    | 1 | 1 | 1  | 1  | 1  |
| 1982 | 1 | 1 | 1 | 1 | 1 | 1 | 1    | 1 | 1 |    | 1  |    |
| 1983 |   |   |   |   | 1 |   |      |   | • |    | 1  |    |
| 1984 |   |   |   |   | 1 |   |      |   | • | 1  |    |    |
| 1985 |   | • |   |   | 1 |   | •    |   | • |    |    | 1  |
| 1986 |   |   |   |   | 1 |   |      |   | • |    | 1  |    |
| 1987 |   | • |   |   |   | 1 | •    |   | • | •  | •  | 1  |
| 1988 |   | • | • |   | 1 |   | •    |   | • |    | 1  |    |
| 1989 |   |   |   |   | 1 |   |      |   | • |    |    |    |
| 1990 |   |   |   |   | 1 |   |      |   |   |    |    |    |

#### Station=671

|      | Month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| Year |       |   |   |   |   |   |   |   |   |    |    |    |
| 1961 |       |   |   |   |   | 1 | 1 |   | 1 | 1  |    | 2  |
| 1962 |       | 2 | 1 |   | 1 | 1 | 1 | 1 |   | 1  |    | 1  |
| 1963 |       | 1 |   | 1 |   | 1 |   | 1 |   | 1  |    |    |
| 1964 | 1     |   | 1 |   | 1 |   | 1 |   |   |    |    |    |
| 1965 | 1     |   |   |   | 1 |   |   |   |   |    |    |    |
| 1966 |       |   |   |   | 1 |   | 1 |   |   |    |    |    |
| 1967 |       |   |   | 1 |   |   |   |   |   |    |    |    |
| 1968 |       |   |   |   | 1 |   |   |   |   |    |    |    |
| 1969 | 1     |   |   |   | 1 |   |   |   |   |    |    |    |
| 1970 | 1     |   |   |   | 1 |   |   |   |   |    |    |    |
| 1971 | 1     |   |   |   | 1 |   |   |   |   |    |    |    |
| 1972 |       |   |   | 1 |   |   |   |   |   |    |    |    |
| 1973 |       |   |   |   | 1 |   |   |   |   |    |    |    |
| 1974 |       |   |   |   | 1 |   |   |   |   |    |    |    |
| 1975 |       |   |   |   |   |   |   |   | 1 |    |    |    |
| 1976 |       |   |   |   | 1 |   |   |   |   |    | 1  |    |
| 1977 |       |   |   |   | 1 |   |   |   |   |    | 1  |    |
| 1978 |       |   |   |   | 1 |   |   |   |   |    | 1  |    |
| 1979 |       |   |   |   | 1 |   |   |   |   |    | 1  |    |
| 1980 |       |   |   |   | 1 |   | 1 |   |   |    | 1  |    |
| 1981 |       |   |   |   | 1 |   | 1 | 1 | 1 | 1  | 1  | 1  |
| 1982 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |    | 1  |    |
| 1983 |       |   |   |   | 1 |   |   |   |   |    | 1  |    |
| 1984 |       |   |   |   | 1 |   |   |   |   | 1  |    |    |
| 1985 |       |   |   |   | 1 |   |   |   |   |    |    | 1  |
| 1986 |       |   |   |   |   |   | 2 | 2 |   |    | 1  |    |
| 1987 |       |   |   |   |   | 1 |   |   |   |    |    | 1  |
| 1988 |       |   |   |   | 1 |   |   |   |   |    | 1  |    |
| 1989 |       | • |   |   | 1 |   | • | 1 |   |    |    |    |
| 1990 |       | • |   |   | 1 |   | • |   |   | •  | •  |    |
| 1991 |       |   |   | 1 |   |   |   | 1 |   | 1  | •  |    |
| 1992 |       | 1 |   |   | 1 |   | • | 1 |   |    | •  |    |
| 1993 |       | • |   | 1 |   |   | • |   |   | •  | •  |    |
| 1994 | 1     |   | 1 |   |   | 1 |   |   | 1 | 1  |    | 1  |

(Continued)

|      | Month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| Year |       |   |   |   |   |   |   |   |   |    |    |    |
| 1995 |       |   | 1 |   | . | 1 |   | . |   |    | 1  |    |
| 1996 |       | 1 |   |   |   |   |   | • | 1 |    |    | 1  |
| 1997 | 1     |   |   |   |   |   | 1 | • |   | 1  |    |    |
| 1998 |       |   | 1 |   | 1 |   |   |   | 1 |    | 1  |    |
| 1999 | 1     | 1 |   |   | 1 |   |   | 1 |   | 1  |    |    |
| 2000 |       |   |   |   | 1 |   |   |   |   |    |    |    |
| 2001 | 1     |   |   | 1 |   |   |   |   | 1 |    |    |    |
| 2002 | 1     |   |   |   |   |   |   |   |   |    | 1  |    |
| 2003 |       |   |   | 1 |   |   | 1 |   |   |    | 1  |    |
| 2004 |       |   |   |   |   |   | 2 |   | 1 |    |    |    |
| 2005 |       |   |   |   |   |   | 1 |   |   |    |    |    |
| 2006 | •     |   |   |   | 1 |   |   |   |   |    |    |    |
| 2007 | •     |   |   |   |   |   |   | 1 |   | 1  |    |    |
| 2008 |       |   |   |   | 1 |   |   |   |   | 1  |    |    |
| 2009 | •     |   | 1 |   |   | 1 |   |   | 1 |    |    | 1  |
| 2010 | •     |   | 1 |   |   | 1 |   |   | 1 |    |    | 1  |
| 2011 |       |   | 1 |   |   | 1 | 1 |   | 1 |    |    | 1  |
| 2012 |       |   | 1 |   |   | 1 |   |   | 1 |    |    | 1  |
| 2013 |       |   | 1 |   |   | 1 |   |   | 1 |    |    | 1  |
| 2014 | •     | • | 1 |   | 1 |   | • |   | 1 | 1  |    | 1  |
| 2015 | •     | • | 1 |   | 1 |   | • |   | 1 |    |    | 1  |
| 2016 | •     | • | 1 |   | 1 |   | • | • | 1 |    |    | 1  |
| 2017 |       |   | 1 |   | 1 |   |   |   |   |    |    |    |

|      | Month |   |   |   |   |   |   |   |   |    |    |    |
|------|-------|---|---|---|---|---|---|---|---|----|----|----|
|      | 1     | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| Year |       |   |   |   |   |   |   |   |   |    |    |    |
| 2000 |       | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2  |    | 1  |
| 2003 |       |   |   |   | 1 |   |   |   |   |    |    |    |
| 2005 |       |   |   |   |   |   |   |   |   |    | 1  |    |
| 2006 |       |   |   |   |   | 1 |   |   |   |    |    | 1  |
| 2008 |       |   |   |   | 1 |   |   |   |   | 1  |    |    |
| 2009 | •     |   | 1 |   |   | 1 |   |   | 1 |    |    | 1  |
| 2010 | •     |   | 1 |   |   | 1 |   |   | 1 |    |    | 1  |
| 2011 | •     |   | 1 |   |   | 1 | 1 |   | 1 |    |    | 1  |
| 2012 | •     |   | 1 |   |   | 1 |   |   | 1 |    |    | 1  |
| 2013 | •     |   | 1 |   |   | 1 |   |   | 1 |    |    | 1  |
| 2014 | •     |   | 1 |   | 1 |   |   |   | 1 | 1  | 1  | 1  |
| 2015 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2016 | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  |
| 2017 | 1     | 1 |   |   |   |   |   |   |   |    |    |    |

|      |    |    |    |    |    | Мо | nth |    |    |    |    |    |
|------|----|----|----|----|----|----|-----|----|----|----|----|----|
|      | 1  | 2  | 3  | 4  | 5  | 6  | 7   | 8  | 9  | 10 | 11 | 12 |
| Year |    |    |    |    |    |    |     |    |    |    |    |    |
| 1988 |    | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 1989 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 1990 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 1991 | 1  | 1  | 1  | 1  | 1  | 1  | 2   |    | 1  | 1  | 1  | 1  |
| 1992 | 2  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 1993 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 1994 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 1995 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 1996 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 1997 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 1998 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 1999 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 2000 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 2  |    |
| 2001 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 2002 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 2003 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 2004 | 1  |    | 1  | 1  | 1  | 1  | 1   | 1  |    | 1  | 1  | 1  |
| 2005 | 1  | 1  | 1  |    | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 2006 | •  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  |    |
| 2007 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  |    |
| 2008 | 1  | 1  | 2  | 1  | 1  | 1  |     | 1  | 1  | 1  | 1  | 2  |
| 2009 | 1  | 1  | 2  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 2010 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 2011 | 1  | 1  | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1  |
| 2012 | 1  | 1  | 18 | 30 | 31 | 30 | 31  | 32 | 30 | 31 | 30 | 32 |
| 2013 | 31 | 28 | 31 | 31 | 31 | 30 | 31  | 32 | 30 | 32 | 30 | 31 |
| 2014 | 31 | 29 | 31 | 30 | 31 | 31 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2015 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2016 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2017 | 31 | 28 | 31 | 30 | 31 | 30 | 17  |    |    |    |    |    |

Station=SRPinckneyHill

#### The UNIVARIATE Procedure Variable: wlmsl\_ngvd29ft (Elevation (wlmsl\_ngvd29ft))

Station=3861

|                 | Moments    |                  |            |  |  |  |  |  |  |
|-----------------|------------|------------------|------------|--|--|--|--|--|--|
| N               | 324        | Sum Weights      | 324        |  |  |  |  |  |  |
| Mean            | 52.4357407 | Sum Observations | 16989.18   |  |  |  |  |  |  |
| Std Deviation   | 3.99028934 | Variance         | 15.922409  |  |  |  |  |  |  |
| Skewness        | 0.39756629 | Kurtosis         | -0.6337343 |  |  |  |  |  |  |
| Uncorrected SS  | 895983.176 | Corrected SS     | 5142.93812 |  |  |  |  |  |  |
| Coeff Variation | 7.6098655  | Std Error Mean   | 0.22168274 |  |  |  |  |  |  |

|                      | <b>Basic Statistical Measures</b> |                     |          |  |  |  |  |  |  |  |
|----------------------|-----------------------------------|---------------------|----------|--|--|--|--|--|--|--|
| Location Variability |                                   |                     |          |  |  |  |  |  |  |  |
| Mean                 | 52.43574                          | Std Deviation       | 3.99029  |  |  |  |  |  |  |  |
| Median               | 51.86000                          | Variance            | 15.92241 |  |  |  |  |  |  |  |
| Mode                 | 48.44000                          | Range               | 22.34000 |  |  |  |  |  |  |  |
|                      |                                   | Interquartile Range | 7.29500  |  |  |  |  |  |  |  |

Note: The mode displayed is the smallest of 2 modes with a count of 3.

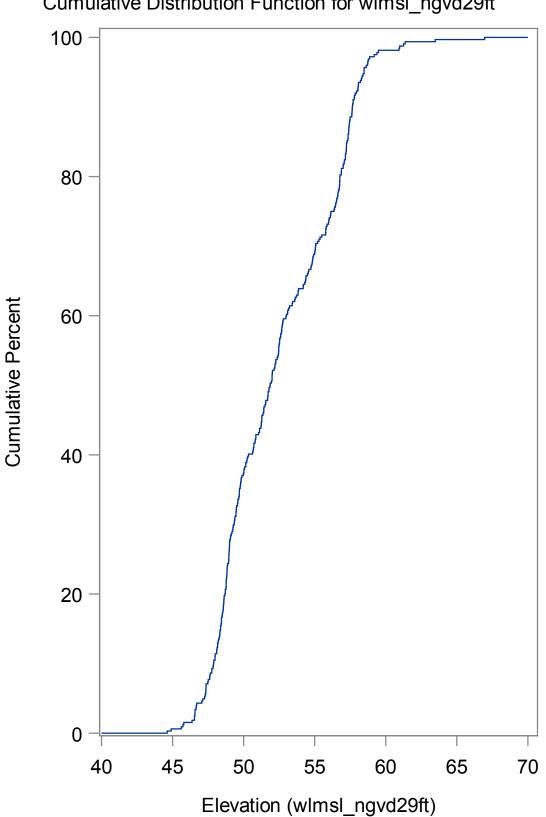
| Tests for Location: Mu0=0 |            |       |          |        |
|---------------------------|------------|-------|----------|--------|
| Test                      | Statistic  |       | p Va     | ue     |
| Student's t               | t 236.5351 |       | Pr >  t  | <.0001 |
| Sign                      | м          | 162   | Pr >=  M | <.0001 |
| Signed Rank               | s          | 26325 | Pr >=  S | <.0001 |


| Quantiles (E | Definition 5) |
|--------------|---------------|
| Level        | Quantile      |
| 100% Max     | 66.960        |
| 99%          | 61.250        |
| 95%          | 58.470        |
| 90%          | 57.650        |
| 75% Q3       | 56.250        |
| 50% Median   | 51.860        |
| 25% Q1       | 48.955        |
| 10%          | 47.890        |
| 5%           | 47.250        |
| 1%           | 45.730        |
| 0% Min       | 44.620        |

#### The UNIVARIATE Procedure Variable: wlmsl\_ngvd29ft (Elevation (wlmsl\_ngvd29ft))

| Extr  | Extreme Observations |       |     |  |  |
|-------|----------------------|-------|-----|--|--|
| Low   | est                  | High  | est |  |  |
| Value | Obs                  | Value | Obs |  |  |
| 44.62 | 271                  | 60.98 | 260 |  |  |
| 44.90 | 275                  | 61.25 | 292 |  |  |
| 45.61 | 270                  | 61.37 | 264 |  |  |
| 45.73 | 277                  | 63.48 | 263 |  |  |
| 45.79 | 269                  | 66.96 | 261 |  |  |

#### The UNIVARIATE Procedure


Station=3861



### Distribution of wlmsl\_ngvd29ft

#### The UNIVARIATE Procedure

Station=3861



Cumulative Distribution Function for wImsl\_ngvd29ft

#### The UNIVARIATE Procedure Variable: wlmsl\_ngvd29ft (Elevation (wlmsl\_ngvd29ft))

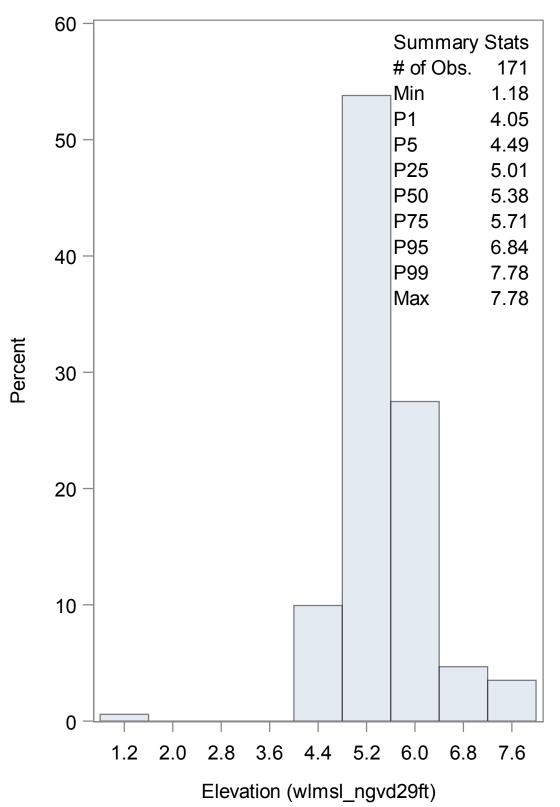
Station=671

| Moments         |            |                  |            |  |
|-----------------|------------|------------------|------------|--|
| N               | 171        | Sum Weights      | 171        |  |
| Mean            | 5.43450292 | Sum Observations | 929.3      |  |
| Std Deviation   | 0.75411589 | Variance         | 0.56869078 |  |
| Skewness        | -0.1048593 | Kurtosis         | 6.89055941 |  |
| Uncorrected SS  | 5146.961   | Corrected SS     | 96.6774327 |  |
| Coeff Variation | 13.8764466 | Std Error Mean   | 0.05766868 |  |

|          | Basic Statistical Measures |                     |         |  |  |
|----------|----------------------------|---------------------|---------|--|--|
| Location |                            | Variability         |         |  |  |
| Mean     | 5.434503                   | Std Deviation       | 0.75412 |  |  |
| Median   | 5.380000                   | Variance            | 0.56869 |  |  |
| Mode     | 5.230000                   | Range               | 6.60000 |  |  |
|          |                            | Interquartile Range | 0.70000 |  |  |

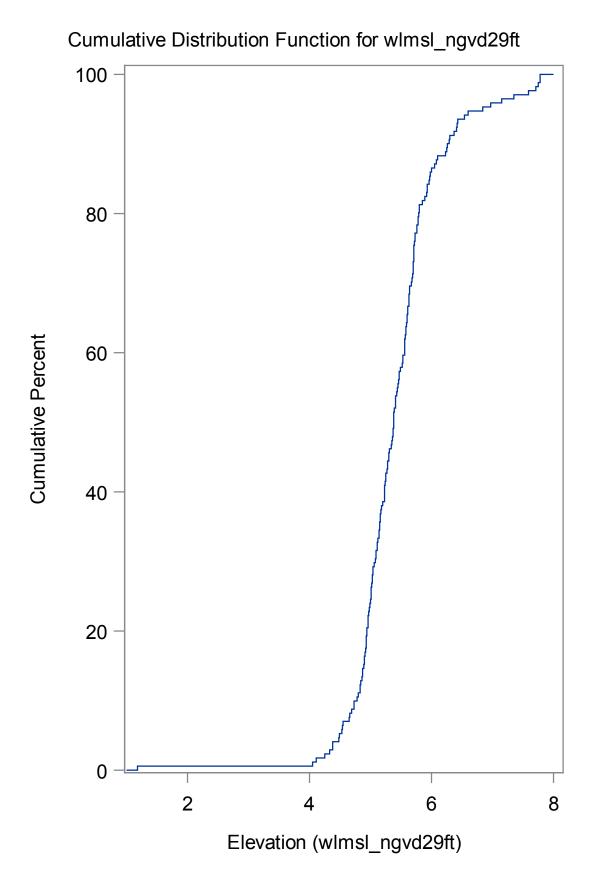
Note: The mode displayed is the smallest of 4 modes with a count of 4.

| Tests for Location: Mu0=0 |            |      |          |        |
|---------------------------|------------|------|----------|--------|
| Test                      | Statistic  |      | p Val    | ue     |
| Student's t               | t 94.23664 |      | Pr >  t  | <.0001 |
| Sign                      | м          | 85.5 | Pr >=  M | <.0001 |
| Signed Rank               | s          | 7353 | Pr >=  S | <.0001 |


| Quantiles (E | Definition 5) |
|--------------|---------------|
| Level        | Quantile      |
| 100% Max     | 7.78          |
| 99%          | 7.78          |
| 95%          | 6.84          |
| 90%          | 6.26          |
| 75% Q3       | 5.71          |
| 50% Median   | 5.38          |
| 25% Q1       | 5.01          |
| 10%          | 4.78          |
| 5%           | 4.49          |
| 1%           | 4.05          |
| 0% Min       | 1.18          |

#### The UNIVARIATE Procedure Variable: wlmsl\_ngvd29ft (Elevation (wlmsl\_ngvd29ft))

| Extr  | Extreme Observations |       |     |  |  |
|-------|----------------------|-------|-----|--|--|
| Low   | est                  | High  | est |  |  |
| Value | Obs                  | Value | Obs |  |  |
| 1.18  | 374                  | 7.59  | 346 |  |  |
| 4.05  | 400                  | 7.71  | 345 |  |  |
| 4.11  | 467                  | 7.75  | 422 |  |  |
| 4.25  | 401                  | 7.78  | 371 |  |  |
| 4.33  | 469                  | 7.78  | 388 |  |  |


#### The UNIVARIATE Procedure

Station=671



### Distribution of wlmsl\_ngvd29ft

#### The UNIVARIATE Procedure



#### The UNIVARIATE Procedure Variable: wlmsl\_ngvd29ft (Elevation (wlmsl\_ngvd29ft))

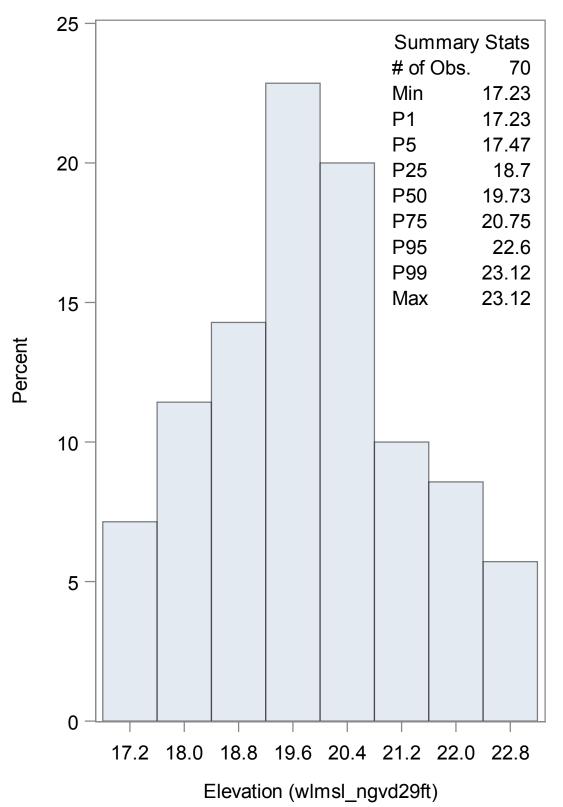
Station=7498

| Moments             |            |                  |            |  |
|---------------------|------------|------------------|------------|--|
| N 70 Sum Weights 70 |            |                  |            |  |
| Mean                | 19.8208571 | Sum Observations | 1387.46    |  |
| Std Deviation       | 1.43952966 | Variance         | 2.07224563 |  |
| Skewness            | 0.23673135 | Kurtosis         | -0.5349689 |  |
| Uncorrected SS      | 27643.6314 | Corrected SS     | 142.984949 |  |
| Coeff Variation     | 7.26270134 | Std Error Mean   | 0.1720567  |  |

|          | Basic Statistical Measures |                     |         |  |  |
|----------|----------------------------|---------------------|---------|--|--|
| Location |                            | Variability         |         |  |  |
| Mean     | 19.82086                   | Std Deviation       | 1.43953 |  |  |
| Median   | 19.73000                   | Variance            | 2.07225 |  |  |
| Mode     | 18.65000                   | Range               | 5.89000 |  |  |
|          |                            | Interquartile Range | 2.05000 |  |  |

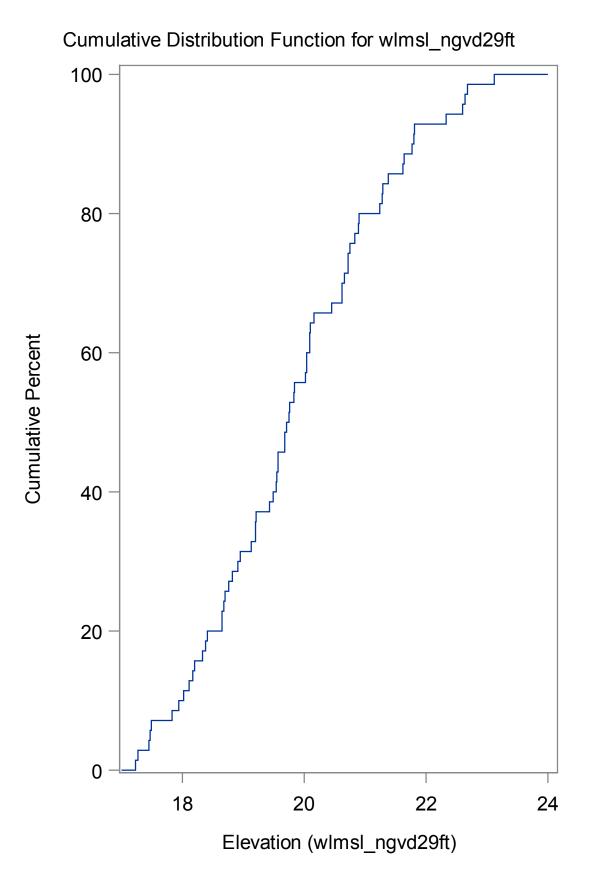
Note: The mode displayed is the smallest of 8 modes with a count of 2.

| Tests for Location: Mu0=0 |            |        |          |        |
|---------------------------|------------|--------|----------|--------|
| Test                      | Statistic  |        | p Va     | ue     |
| Student's t               | t 115.1996 |        | Pr >  t  | <.0001 |
| Sign                      | м          | 35     | Pr >=  M | <.0001 |
| Signed Rank               | s          | 1242.5 | Pr >=  S | <.0001 |


| Quantiles (E | Definition 5) |
|--------------|---------------|
| Level        | Quantile      |
| 100% Max     | 23.120        |
| 99%          | 23.120        |
| 95%          | 22.600        |
| 90%          | 21.785        |
| 75% Q3       | 20.750        |
| 50% Median   | 19.730        |
| 25% Q1       | 18.700        |
| 10%          | 17.980        |
| 5%           | 17.470        |
| 1%           | 17.230        |
| 0% Min       | 17.230        |

#### The UNIVARIATE Procedure Variable: wlmsl\_ngvd29ft (Elevation (wlmsl\_ngvd29ft))

| Extreme Observations |     |         |     |  |
|----------------------|-----|---------|-----|--|
| Lowest               |     | Highest |     |  |
| Value                | Obs | Value   | Obs |  |
| 17.23                | 500 | 22.33   | 535 |  |
| 17.27                | 551 | 22.60   | 517 |  |
| 17.45                | 527 | 22.64   | 534 |  |
| 17.47                | 525 | 22.68   | 560 |  |
| 17.49                | 499 | 23.12   | 555 |  |


#### The UNIVARIATE Procedure

Station=7498



### Distribution of wlmsl\_ngvd29ft

#### The UNIVARIATE Procedure



#### The UNIVARIATE Procedure Variable: wlmsl\_ngvd29ft (Elevation (wlmsl\_ngvd29ft))

| Moments         |            |                  |            |  |
|-----------------|------------|------------------|------------|--|
| N               | 2245       | Sum Weights      | 2245       |  |
| Mean            | 61.8838517 | Sum Observations | 138929.247 |  |
| Std Deviation   | 3.1917509  | Variance         | 10.1872738 |  |
| Skewness        | -0.144714  | Kurtosis         | -0.4711951 |  |
| Uncorrected SS  | 8620337.16 | Corrected SS     | 22860.2425 |  |
| Coeff Variation | 5.15764746 | Std Error Mean   | 0.06736291 |  |

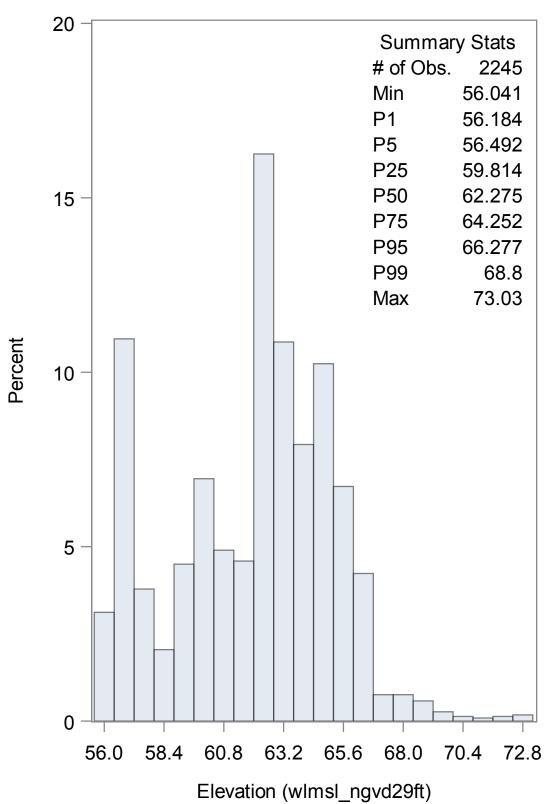
Station=SRPinckneyHill

| Basic Statistical Measures |          |                      |          |  |
|----------------------------|----------|----------------------|----------|--|
| Location Variability       |          |                      |          |  |
| Mean                       | 61.88385 | Std Deviation 3.1917 |          |  |
| Median                     | 62.27500 | Variance             | 10.18727 |  |
| Mode                       | 56.75200 | Range                | 16.98900 |  |
|                            |          | Interquartile Range  | 4.43800  |  |

Note: The mode displayed is the smallest of 5 modes with a count of 4.

| Tests for Location: Mu0=0 |    |          |          |        |  |
|---------------------------|----|----------|----------|--------|--|
| Test                      | St | atistic  | p Value  |        |  |
| Student's t               | t  | 918.6636 | Pr >  t  | <.0001 |  |
| Sign                      | м  | 1122.5   | Pr >=  M | <.0001 |  |
| Signed Rank               | s  | 1260568  | Pr >=  S | <.0001 |  |

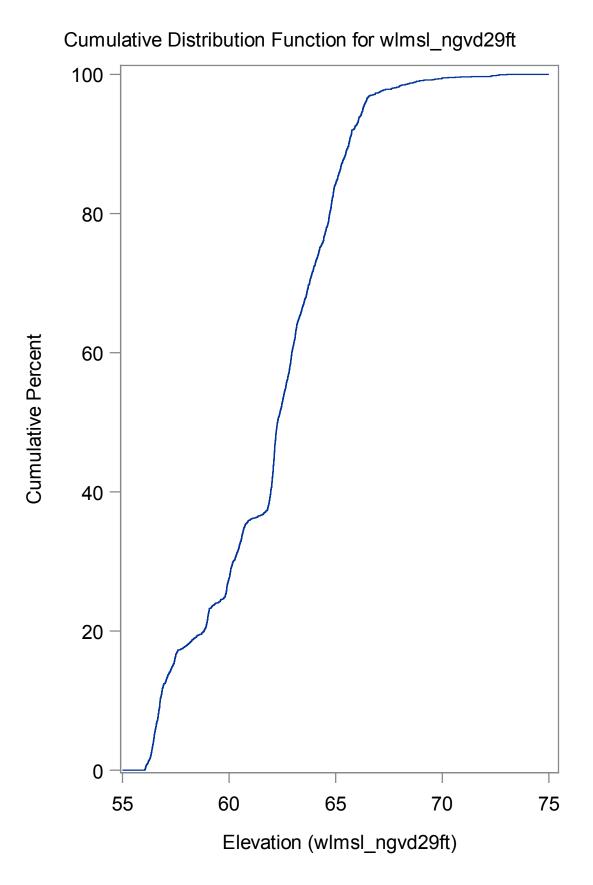
| Quantiles (Definition 5) |        |  |
|--------------------------|--------|--|
| Level Quan               |        |  |
| 100% Max                 | 73.030 |  |
| 99%                      | 68.800 |  |
| 95%                      | 66.277 |  |
| 90%                      | 65.618 |  |
| 75% Q3                   | 64.252 |  |
| 50% Median               | 62.275 |  |
| 25% Q1                   | 59.814 |  |
| 10%                      | 56.768 |  |
| 5%                       | 56.492 |  |
| 1%                       | 56.184 |  |
| <b>0% Min</b> 56.04      |        |  |


#### The UNIVARIATE Procedure Variable: wlmsl\_ngvd29ft (Elevation (wlmsl\_ngvd29ft))

| Extreme Observations |           |         |     |  |
|----------------------|-----------|---------|-----|--|
| Lowe                 | est       | Highest |     |  |
| Value                | Obs       | Value   | Obs |  |
| 56.041               | 950       | 72.34   | 651 |  |
| 56.049               | 951       | 72.54   | 648 |  |
| 56.059               | 958 72.64 | 649     |     |  |
| 56.070               | 959       | 72.68   | 652 |  |
| 56.074               | 947       | 73.03   | 653 |  |

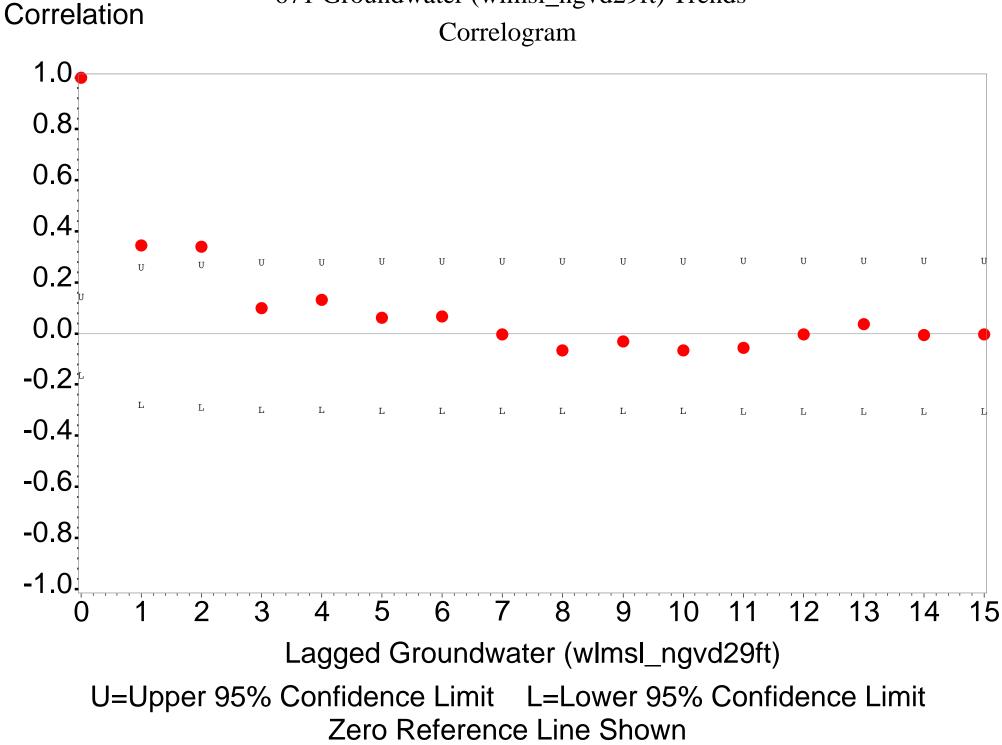
| Missing Values   |       |            |                |  |
|------------------|-------|------------|----------------|--|
|                  |       | Percent Of |                |  |
| Missing<br>Value | Count | All Obs    | Missing<br>Obs |  |
|                  | 1     | 0.04       | 100.00         |  |

#### The UNIVARIATE Procedure


Station=SRPinckneyHill



### Distribution of wlmsl\_ngvd29ft


#### The UNIVARIATE Procedure

Station=SRPinckneyHill



# 671 Groundwater (wlmsl\_ngvd29ft) Trends Autocorrelation Statistics

| Lagged<br>Groundwater<br>(wlmsl_ngvd29ft) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|-------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                         | 1.000       | 0.078             | 0.155          | -0.155         |
| 1                                         | 0.343       | 0.134             | 0.269          | -0.269         |
| 2                                         | 0.340       | 0.140             | 0.279          | -0.279         |
| 3                                         | 0.099       | 0.145             | 0.289          | -0.289         |
| 4                                         | 0.131       | 0.145             | 0.290          | -0.290         |
| 5                                         | 0.062       | 0.146             | 0.291          | -0.291         |
| 6                                         | 0.067       | 0.146             | 0.292          | -0.292         |
| 7                                         | -0.004      | 0.146             | 0.292          | -0.292         |
| 8                                         | -0.066      | 0.146             | 0.292          | -0.292         |
| 9                                         | -0.030      | 0.146             | 0.292          | -0.292         |
| 10                                        | -0.065      | 0.146             | 0.292          | -0.292         |
| 11                                        | -0.055      | 0.146             | 0.293          | -0.293         |
| 12                                        | -0.004      | 0.146             | 0.293          | -0.293         |
| 13                                        | 0.036       | 0.146             | 0.293          | -0.293         |
| 14                                        | -0.006      | 0.147             | 0.293          | -0.293         |
| 15                                        | -0.004      | 0.147             | 0.293          | -0.293         |



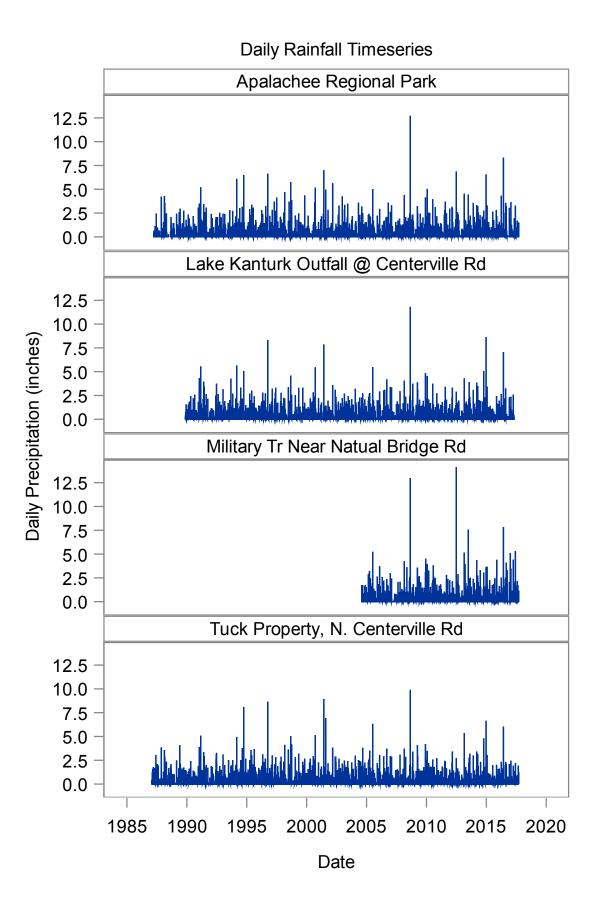
671 Groundwater (wlmsl\_ngvd29ft) Trends

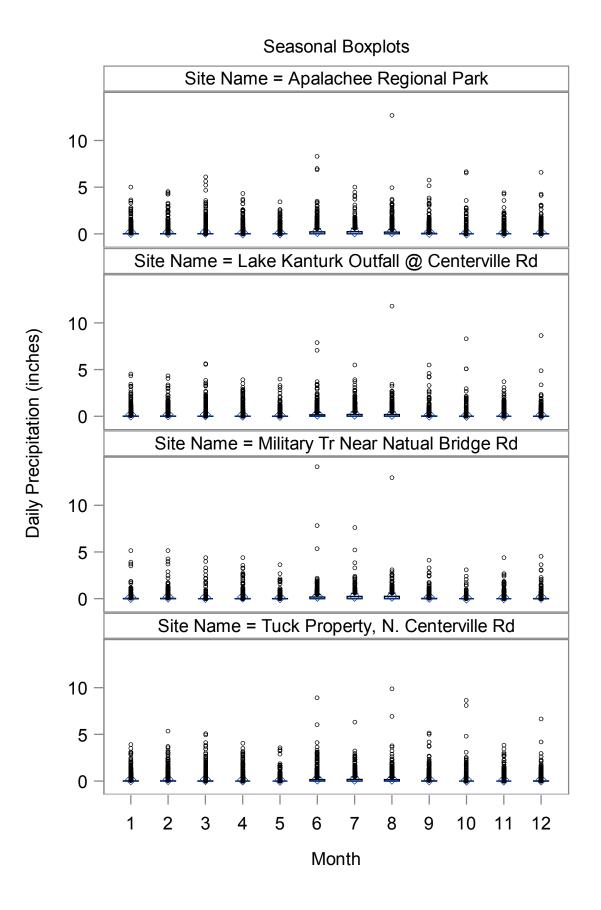
# 3861 Groundwater (wlmsl\_ngvd29ft) Trends Autocorrelation Statistics

| Lagged<br>Groundwater<br>(wlmsl_ngvd29ft) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|-------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                         | 1.000       | 0.094             | 0.188          | -0.188         |
| 1                                         | 0.757       | 0.163             | 0.326          | -0.326         |
| 2                                         | 0.673       | 0.192             | 0.383          | -0.383         |
| 3                                         | 0.519       | 0.211             | 0.423          | -0.423         |
| 4                                         | 0.393       | 0.222             | 0.445          | -0.445         |
| 5                                         | 0.227       | 0.229             | 0.457          | -0.457         |
| 6                                         | 0.130       | 0.231             | 0.461          | -0.461         |
| 7                                         | -0.031      | 0.231             | 0.462          | -0.462         |
| 8                                         | -0.115      | 0.231             | 0.462          | -0.462         |
| 9                                         | -0.227      | 0.232             | 0.463          | -0.463         |
| 10                                        | -0.273      | 0.234             | 0.467          | -0.467         |
| 11                                        | -0.309      | 0.236             | 0.473          | -0.473         |
| 12                                        | -0.319      | 0.240             | 0.480          | -0.480         |
| 13                                        | -0.294      | 0.244             | 0.488          | -0.488         |
| 14                                        | -0.271      | 0.247             | 0.494          | -0.494         |
| 15                                        | -0.280      | 0.249             | 0.499          | -0.499         |

Correlation Correlogram 1.0 0.8 0.6 U U U U U U U U U 0.4 U U U U 0.2 0.0 -0.2 L -0.4 L L L L L L T. T. L L L L -0.6 -0.8 -1.0 5 8 2 3 4 6 9 10 12 13 14 11 7 15 1 0 Lagged Groundwater (wlmsl\_ngvd29ft) U=Upper 95% Confidence Limit L=Lower 95% Confidence Limit Zero Reference Line Shown

3861 Groundwater (wlmsl\_ngvd29ft) Trends


# 7498 Groundwater (wlmsl\_ngvd29ft) Trends Autocorrelation Statistics


| Lagged<br>Groundwater<br>(wlmsl_ngvd29ft) | Correlation | Standard<br>Error | Upper<br>Limit | Lower<br>Limit |
|-------------------------------------------|-------------|-------------------|----------------|----------------|
| 0                                         | 1.000       | 0.120             | 0.241          | -0.241         |
| 1                                         | 0.533       | 0.209             | 0.417          | -0.417         |
| 2                                         | 0.511       | 0.227             | 0.455          | -0.455         |
| 3                                         | 0.231       | 0.243             | 0.487          | -0.487         |
| 4                                         | 0.177       | 0.247             | 0.493          | -0.493         |
| 5                                         | 0.107       | 0.248             | 0.497          | -0.497         |
| 6                                         | -0.036      | 0.249             | 0.498          | -0.498         |
| 7                                         | -0.031      | 0.249             | 0.498          | -0.498         |
| 8                                         | -0.174      | 0.249             | 0.498          | -0.498         |
| 9                                         | -0.123      | 0.251             | 0.502          | -0.502         |
| 10                                        | -0.166      | 0.252             | 0.504          | -0.504         |
| 11                                        | -0.045      | 0.253             | 0.507          | -0.507         |
| 12                                        | 0.053       | 0.254             | 0.507          | -0.507         |
| 13                                        | 0.028       | 0.254             | 0.507          | -0.507         |
| 14                                        | 0.040       | 0.254             | 0.508          | -0.508         |
| 15                                        | -0.097      | 0.254             | 0.508          | -0.508         |

#### Correlation Correlogram 1.0 0.8 0.6 U U U U U U U U U U U U 0.4 U 0.2 0.0 -0.2 -0.4 L L L L L Т. -0.6 -0.8 -1.0 5 2 3 6 8 9 10 12 13 4 7 11 14 15 1 0 Lagged Groundwater (wlmsl\_ngvd29ft) U=Upper 95% Confidence Limit L=Lower 95% Confidence Limit Zero Reference Line Shown

7498 Groundwater (wlmsl\_ngvd29ft) Trends

# ATTACHMENT 7 DAILY RAINFALL DESCRIPTIVE STATISTICS AND PLOTS





# Beginning and End Dates for Daily Rainfall Stations

| Obs | Site Name                             | Station             | Date       | Date       |
|-----|---------------------------------------|---------------------|------------|------------|
| 1   | Apalachee Regional Park               | NWFID_11299_prcp_in | 03/30/1987 | 09/12/2017 |
| 2   | Lake Kanturk Outfall @ Centerville Rd | NWFID_11301_prcp_in | 11/09/1989 | 05/02/2017 |
| 3   | Military Tr Near Natual Bridge Rd     | NWFID_11370_prcp_in | 08/03/2004 | 09/12/2017 |
| 4   | Tuck Property, N. Centerville Rd      | NWFID_1293_prcp_in  | 01/28/1987 | 09/12/2017 |

Station=NWFID\_11299\_prcp\_in Site Name=Apalachee Regional Park

|      |    | Month |    |    |    |    |    |    |    |    |    |    |
|------|----|-------|----|----|----|----|----|----|----|----|----|----|
|      | 1  | 2     | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
| Year |    |       |    |    |    |    |    |    |    |    |    |    |
| 1987 | 0  | 0     | 2  | 30 | 31 | 30 | 30 | 11 | 30 | 31 | 30 | 31 |
| 1988 | 31 | 27    | 31 | 30 | 13 | 13 | 0  | 14 | 30 | 31 | 30 | 31 |
| 1989 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1990 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1991 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1992 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1993 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1994 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1995 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1996 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1997 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1998 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1999 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2000 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2001 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2002 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2003 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2004 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2005 | 31 | 28    | 31 | 22 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2006 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2007 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2008 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2009 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2010 | 31 | 28    | 31 | 30 | 31 | 24 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2011 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 19 |
| 2012 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2013 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2014 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2015 | 31 | 28    | 31 | 30 | 31 | 30 | 23 | 28 | 30 | 31 | 30 | 31 |
| 2016 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 9  | 25 |
| 2017 | 27 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 12 |    |    |    |

Station=NWFID\_11301\_prcp\_in Site Name=Lake Kanturk Outfall @ Centerville Rd

|      |    |    |    |    |    | Мо | nth |    |    |    |    |    |
|------|----|----|----|----|----|----|-----|----|----|----|----|----|
|      | 1  | 2  | 3  | 4  | 5  | 6  | 7   | 8  | 9  | 10 | 11 | 12 |
| Year |    |    |    |    |    |    |     |    |    |    |    |    |
| 1987 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1988 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1989 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 22 | 31 |
| 1990 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1991 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1992 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1993 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1994 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1995 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1996 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1997 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1998 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 1999 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2000 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2001 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 27 | 30 | 31 | 30 | 31 |
| 2002 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2003 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2004 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2005 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2006 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2007 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2008 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2009 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2010 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2011 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2012 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2013 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2014 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2015 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2016 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 26 | 22 | 29 | 28 | 17 |
| 2017 | 26 | 28 | 24 | 29 | 2  | 0  | 0   | 0  | 0  |    |    |    |

Station=NWFID\_11370\_prcp\_in Site Name=Military Tr Near Natual Bridge Rd

|      |    |    |    |    |    | Мо | nth |    |    |    |    |    |
|------|----|----|----|----|----|----|-----|----|----|----|----|----|
|      | 1  | 2  | 3  | 4  | 5  | 6  | 7   | 8  | 9  | 10 | 11 | 12 |
| Year |    |    |    |    |    |    |     |    |    |    |    |    |
| 1987 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1988 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1989 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1990 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1991 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1992 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1993 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1994 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1995 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1996 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1997 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1998 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 1999 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 2000 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 2001 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 2002 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 2003 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  |
| 2004 | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 29 | 30 | 31 | 30 | 31 |
| 2005 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2006 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2007 | 31 | 20 | 30 | 28 | 31 | 28 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2008 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2009 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2010 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2011 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2012 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2013 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2014 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2015 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2016 | 31 | 29 | 31 | 30 | 31 | 30 | 31  | 31 | 30 | 31 | 30 | 31 |
| 2017 | 31 | 28 | 31 | 30 | 31 | 30 | 31  | 31 | 12 |    | •  | •  |

Station=NWFID\_1293\_prcp\_in Site Name=Tuck Property, N. Centerville Rd

|      |    | Month |    |    |    |    |    |    |    |    |    |    |
|------|----|-------|----|----|----|----|----|----|----|----|----|----|
|      | 1  | 2     | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
| Year |    |       |    |    |    |    |    |    |    |    |    |    |
| 1987 | 4  | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1988 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1989 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1990 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1991 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1992 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1993 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1994 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1995 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1996 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1997 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1998 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 1999 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2000 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2001 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2002 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2003 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2004 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2005 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2006 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2007 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2008 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2009 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2010 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2011 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2012 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2013 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2014 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2015 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2016 | 31 | 29    | 31 | 30 | 31 | 30 | 9  | 31 | 30 | 31 | 30 | 31 |
| 2017 | 31 | 12    | 28 | 30 | 31 | 30 | 31 | 21 | 12 |    |    |    |

#### The UNIVARIATE Procedure Variable: prcp\_in (Daily Precipitation (inches))

Station=NWFID\_11299\_prcp\_in Site Name=Apalachee Regional Park

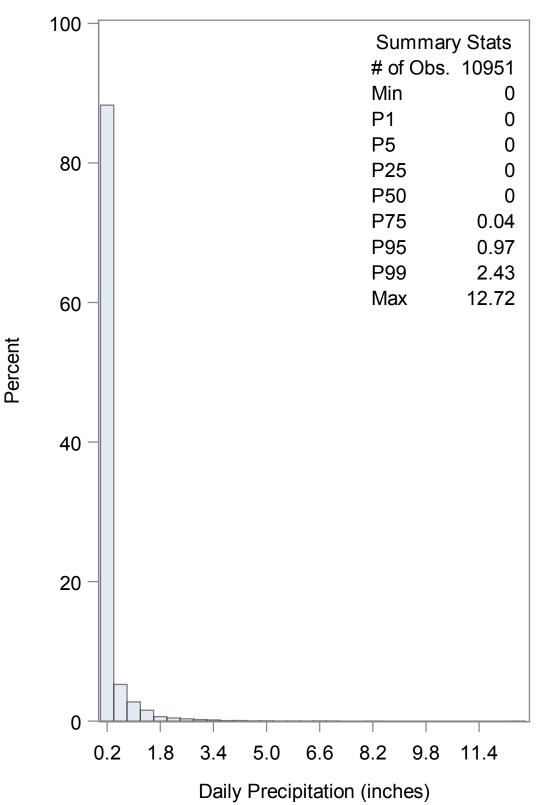
| Moments         |            |                  |            |  |  |  |  |  |  |
|-----------------|------------|------------------|------------|--|--|--|--|--|--|
| N               | 10951      | Sum Weights      | 10951      |  |  |  |  |  |  |
| Mean            | 0.15977719 | Sum Observations | 1749.72    |  |  |  |  |  |  |
| Std Deviation   | 0.49902331 | Variance         | 0.24902426 |  |  |  |  |  |  |
| Skewness        | 6.76886739 | Kurtosis         | 80.0353645 |  |  |  |  |  |  |
| Uncorrected SS  | 3006.381   | Corrected SS     | 2726.81566 |  |  |  |  |  |  |
| Coeff Variation | 312.3245   | Std Error Mean   | 0.00476863 |  |  |  |  |  |  |

|        | Basic Statistical Measures |                     |          |  |  |  |  |  |  |  |
|--------|----------------------------|---------------------|----------|--|--|--|--|--|--|--|
| Loc    | ation                      | Variability         |          |  |  |  |  |  |  |  |
| Mean   | 0.159777                   | Std Deviation       | 0.49902  |  |  |  |  |  |  |  |
| Median | 0.000000                   | Variance            | 0.24902  |  |  |  |  |  |  |  |
| Mode   | 0.000000                   | Range               | 12.72000 |  |  |  |  |  |  |  |
|        |                            | Interquartile Range | 0.04000  |  |  |  |  |  |  |  |

| Tests for Location: Mu0=0 |    |          |          |        |  |  |  |  |
|---------------------------|----|----------|----------|--------|--|--|--|--|
| Test                      | St | atistic  | p Value  |        |  |  |  |  |
| Student's t               | t  | 33.50587 | Pr >  t  | <.0001 |  |  |  |  |
| Sign                      | м  | 1861.5   | Pr >=  M | <.0001 |  |  |  |  |
| Signed Rank               | s  | 3466113  | Pr >=  S | <.0001 |  |  |  |  |

| Quantiles (D | Definition 5) |
|--------------|---------------|
| Level        | Quantile      |
| 100% Max     | 12.72         |
| 99%          | 2.43          |
| 95%          | 0.97          |
| 90%          | 0.49          |
| 75% Q3       | 0.04          |
| 50% Median   | 0.00          |
| 25% Q1       | 0.00          |
| 10%          | 0.00          |
| 5%           | 0.00          |
| 1%           | 0.00          |
| 0% Min       | 0.00          |

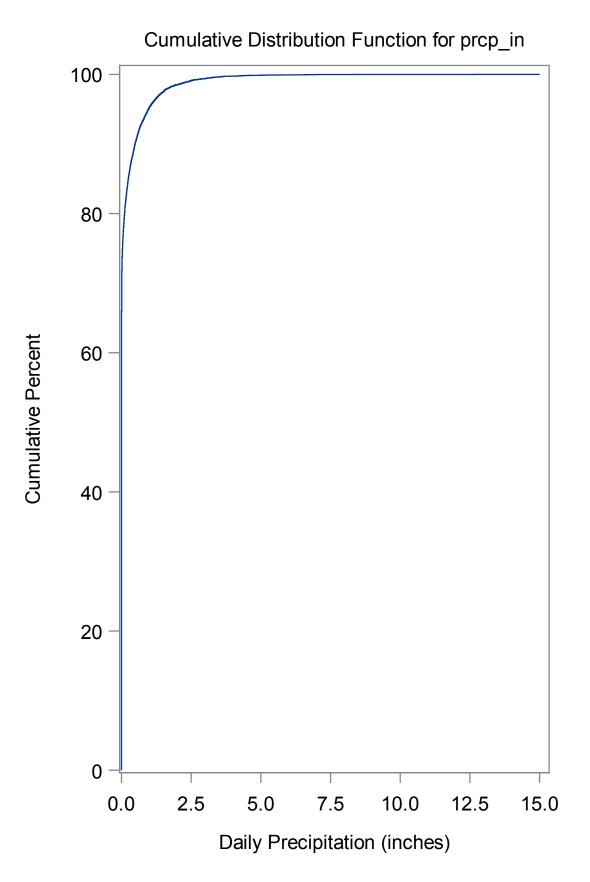
#### The UNIVARIATE Procedure Variable: prcp\_in (Daily Precipitation (inches))


Station=NWFID\_11299\_prcp\_in Site Name=Apalachee Regional Park

| Ex    | Extreme Observations |         |       |  |  |  |  |  |  |  |
|-------|----------------------|---------|-------|--|--|--|--|--|--|--|
| Lov   | vest                 | Highest |       |  |  |  |  |  |  |  |
| Value | Obs                  | Value   | Obs   |  |  |  |  |  |  |  |
| 0     | 11186                | 6.65    | 3541  |  |  |  |  |  |  |  |
| 0     | 11183                | 6.88    | 9281  |  |  |  |  |  |  |  |
| 0     | 11182                | 7.01    | 5249  |  |  |  |  |  |  |  |
| 0     | 11181                | 8.33    | 10723 |  |  |  |  |  |  |  |
| 0     | 11179                | 12.72   | 7879  |  |  |  |  |  |  |  |

| Missing Values   |        |         |                |  |
|------------------|--------|---------|----------------|--|
|                  | Percen |         |                |  |
| Missing<br>Value | Count  | All Obs | Missing<br>Obs |  |
|                  | 235    | 2.10    | 100.00         |  |

#### The UNIVARIATE Procedure


Station=NWFID\_11299\_prcp\_in Site Name=Apalachee Regional Park



Distribution of prcp\_in

#### The UNIVARIATE Procedure

Station=NWFID\_11299\_prcp\_in Site Name=Apalachee Regional Park



#### The UNIVARIATE Procedure Variable: prcp\_in (Daily Precipitation (inches))

Station=NWFID\_11301\_prcp\_in Site Name=Lake Kanturk Outfall @ Centerville Rd

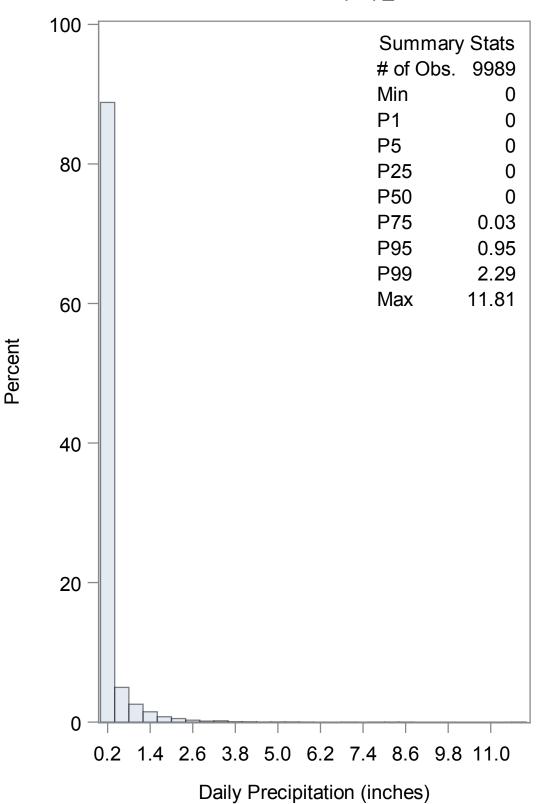
| Moments         |            |                  |            |  |  |
|-----------------|------------|------------------|------------|--|--|
| Ν               | 9989       | Sum Weights      | 9989       |  |  |
| Mean            | 0.15401942 | Sum Observations | 1538.5     |  |  |
| Std Deviation   | 0.48682715 | Variance         | 0.23700067 |  |  |
| Skewness        | 6.89518613 | Kurtosis         | 83.0227524 |  |  |
| Uncorrected SS  | 2604.1216  | Corrected SS     | 2367.16272 |  |  |
| Coeff Variation | 316.081663 | Std Error Mean   | 0.00487095 |  |  |

|          | Basic Statistical Measures |                     |          |  |  |  |
|----------|----------------------------|---------------------|----------|--|--|--|
| Location |                            | Variability         |          |  |  |  |
| Mean     | 0.154019                   | Std Deviation       | 0.48683  |  |  |  |
| Median   | 0.000000                   | Variance            | 0.23700  |  |  |  |
| Mode     | 0.000000                   | Range               | 11.81000 |  |  |  |
|          |                            | Interquartile Range | 0.03000  |  |  |  |

| Tests for Location: Mu0=0 |              |         |          |        |  |
|---------------------------|--------------|---------|----------|--------|--|
| Test                      | St           | atistic | p Value  |        |  |
| Student's t               | st t 31.6199 |         | Pr >  t  | <.0001 |  |
| Sign                      | м            | 1702    | Pr >=  M | <.0001 |  |
| Signed Rank               | s            | 2897655 | Pr >=  S | <.0001 |  |

| Quantiles (D | Quantiles (Definition 5) |  |  |  |
|--------------|--------------------------|--|--|--|
| Level        | Quantile                 |  |  |  |
| 100% Max     | 11.81                    |  |  |  |
| 99%          | 2.29                     |  |  |  |
| 95%          | 0.95                     |  |  |  |
| 90%          | 0.46                     |  |  |  |
| 75% Q3       | 0.03                     |  |  |  |
| 50% Median   | 0.00                     |  |  |  |
| 25% Q1       | 0.00                     |  |  |  |
| 10%          | 0.00                     |  |  |  |
| 5%           | 0.00                     |  |  |  |
| 1%           | 0.00                     |  |  |  |
| 0% Min       | 0.00                     |  |  |  |

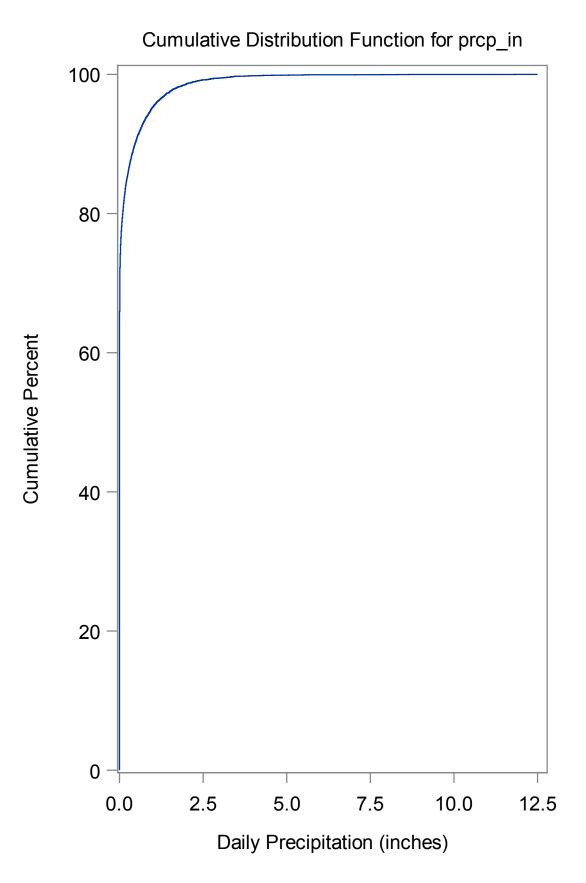
#### The UNIVARIATE Procedure Variable: prcp\_in (Daily Precipitation (inches))


Station=NWFID\_11301\_prcp\_in Site Name=Lake Kanturk Outfall @ Centerville Rd

| Ex    | treme Ot                                                                                                                                                            | oservatio | ons   |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|
| Lov   | Lower           Value         Obs           0         22230           0         22230           0         22230           0         22235           0         22234 |           | hest  |
| Value |                                                                                                                                                                     |           | Obs   |
| 0     |                                                                                                                                                                     |           | 21909 |
| 0     |                                                                                                                                                                     |           | 16435 |
| 0     |                                                                                                                                                                     |           | 14727 |
| 0     |                                                                                                                                                                     |           | 21378 |
| 0     |                                                                                                                                                                     |           | 19065 |

| Missing Values   |       |            |                |  |
|------------------|-------|------------|----------------|--|
|                  |       | Percent Of |                |  |
| Missing<br>Value | Count | All Obs    | Missing<br>Obs |  |
|                  | 1197  | 10.70      | 100.00         |  |

#### The UNIVARIATE Procedure


Station=NWFID\_11301\_prcp\_in Site Name=Lake Kanturk Outfall @ Centerville Rd



Distribution of prcp\_in

#### The UNIVARIATE Procedure

Station=NWFID\_11301\_prcp\_in Site Name=Lake Kanturk Outfall @ Centerville Rd



#### The UNIVARIATE Procedure Variable: prcp\_in (Daily Precipitation (inches))

Station=NWFID\_11370\_prcp\_in Site Name=Military Tr Near Natual Bridge Rd

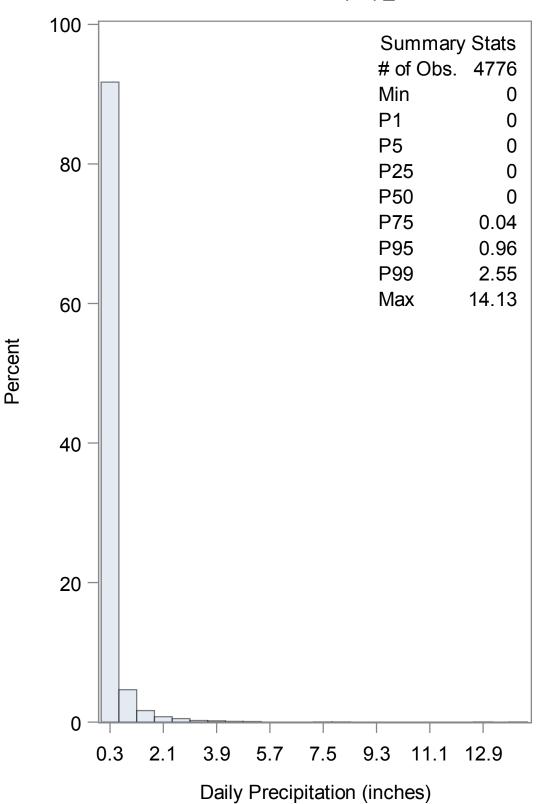
| Moments         |            |                  |            |  |  |
|-----------------|------------|------------------|------------|--|--|
| N               | 4776       | Sum Weights      | 4776       |  |  |
| Mean            | 0.16686348 | Sum Observations | 796.939998 |  |  |
| Std Deviation   | 0.56953667 | Variance         | 0.32437202 |  |  |
| Skewness        | 9.34671412 | Kurtosis         | 156.39078  |  |  |
| Uncorrected SS  | 1681.85659 | Corrected SS     | 1548.87641 |  |  |
| Coeff Variation | 341.31894  | Std Error Mean   | 0.00824118 |  |  |

|        | Basic Statistical Measures |                     |          |  |  |
|--------|----------------------------|---------------------|----------|--|--|
| Loc    | ation                      | Variability         |          |  |  |
| Mean   | 0.166863                   | Std Deviation       | 0.56954  |  |  |
| Median | 0.000000                   | Variance            | 0.32437  |  |  |
| Mode   | 0.000000                   | Range               | 14.13000 |  |  |
|        |                            | Interquartile Range | 0.04000  |  |  |

| Tests for Location: Mu0=0 |    |          |          |        |  |
|---------------------------|----|----------|----------|--------|--|
| Test                      | St | atistic  | p Value  |        |  |
| Student's t               | t  | 20.24752 | Pr >  t  | <.0001 |  |
| Sign                      | м  | 823      | Pr >=  M | <.0001 |  |
| Signed Rank               | s  | 677740.5 | Pr >=  S | <.0001 |  |

| Quantiles (E | Quantiles (Definition 5) |  |  |  |
|--------------|--------------------------|--|--|--|
| Level        | Quantile                 |  |  |  |
| 100% Max     | 14.13                    |  |  |  |
| 99%          | 2.55                     |  |  |  |
| 95%          | 0.96                     |  |  |  |
| 90%          | 0.47                     |  |  |  |
| 75% Q3       | 0.04                     |  |  |  |
| 50% Median   | 0.00                     |  |  |  |
| 25% Q1       | 0.00                     |  |  |  |
| 10%          | 0.00                     |  |  |  |
| 5%           | 0.00                     |  |  |  |
| 1%           | 0.00                     |  |  |  |
| 0% Min       | 0.00                     |  |  |  |

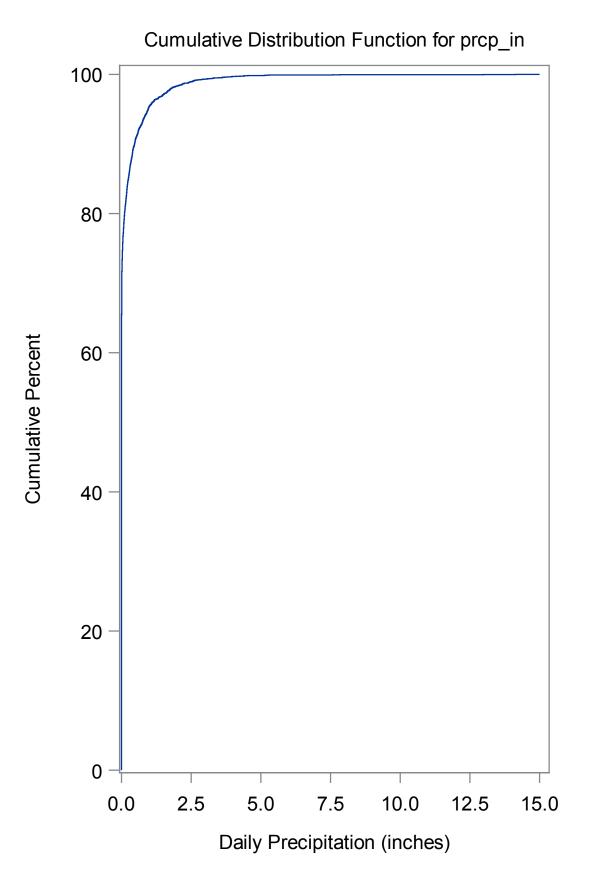
#### The UNIVARIATE Procedure Variable: prcp\_in (Daily Precipitation (inches))


Station=NWFID\_11370\_prcp\_in Site Name=Military Tr Near Natual Bridge Rd

| Ex    | treme Ob                                                                                                                                                                                       | oservatio | ons   |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|
| Lov   | Lowest           Value         Obs           0         33558           0         33554           0         33554           0         33553           0         33553           0         33553 |           | hest  |
| Value |                                                                                                                                                                                                |           | Obs   |
| 0     |                                                                                                                                                                                                |           | 33460 |
| 0     |                                                                                                                                                                                                |           | 32025 |
| 0     |                                                                                                                                                                                                |           | 33095 |
| 0     |                                                                                                                                                                                                |           | 30251 |
| 0     |                                                                                                                                                                                                |           | 31653 |

| Missing Values   |       |         |                |  |  |  |  |  |  |
|------------------|-------|---------|----------------|--|--|--|--|--|--|
|                  |       | Perce   | ent Of         |  |  |  |  |  |  |
| Missing<br>Value | Count | All Obs | Missing<br>Obs |  |  |  |  |  |  |
|                  | 6410  | 57.30   | 100.00         |  |  |  |  |  |  |

#### The UNIVARIATE Procedure


Station=NWFID\_11370\_prcp\_in Site Name=Military Tr Near Natual Bridge Rd



Distribution of prcp\_in

#### The UNIVARIATE Procedure

Station=NWFID\_11370\_prcp\_in Site Name=Military Tr Near Natual Bridge Rd



#### The UNIVARIATE Procedure Variable: prcp\_in (Daily Precipitation (inches))

Station=NWFID\_1293\_prcp\_in Site Name=Tuck Property, N. Centerville Rd

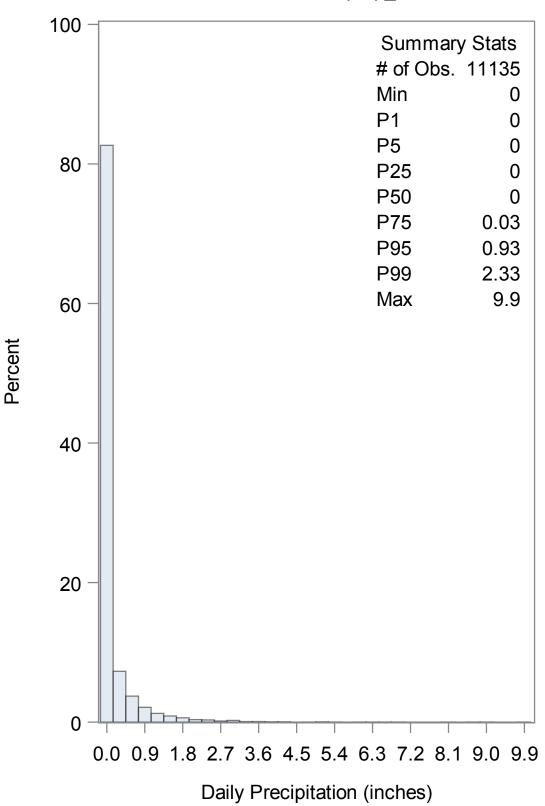
| Moments         |            |                  |            |  |  |  |  |  |  |  |  |
|-----------------|------------|------------------|------------|--|--|--|--|--|--|--|--|
| Ν               | 11135      | Sum Weights      | 11135      |  |  |  |  |  |  |  |  |
| Mean            | 0.15045263 | Sum Observations | 1675.29    |  |  |  |  |  |  |  |  |
| Std Deviation   | 0.47865748 | Variance         | 0.22911298 |  |  |  |  |  |  |  |  |
| Skewness        | 6.63187691 | Kurtosis         | 71.8716282 |  |  |  |  |  |  |  |  |
| Uncorrected SS  | 2802.9957  | Corrected SS     | 2550.94392 |  |  |  |  |  |  |  |  |
| Coeff Variation | 318.144978 | Std Error Mean   | 0.00453607 |  |  |  |  |  |  |  |  |

|        | Basic S  | tatistical Measures |         |  |  |  |
|--------|----------|---------------------|---------|--|--|--|
| Loc    | ation    | Variability         |         |  |  |  |
| Mean   | 0.150453 | Std Deviation       | 0.47866 |  |  |  |
| Median | 0.000000 | Variance            | 0.22911 |  |  |  |
| Mode   | 0.000000 | Range               | 9.90000 |  |  |  |
|        |          | Interquartile Range | 0.03000 |  |  |  |

| Tests for Location: Mu0=0 |            |         |          |        |  |  |  |  |  |  |  |
|---------------------------|------------|---------|----------|--------|--|--|--|--|--|--|--|
| Test                      | St         | atistic | p Value  |        |  |  |  |  |  |  |  |
| Student's t               | t 33.16806 |         | Pr >  t  | <.0001 |  |  |  |  |  |  |  |
| Sign                      | м          | 1813.5  | Pr >=  M | <.0001 |  |  |  |  |  |  |  |
| Signed Rank               | s          | 3289689 | Pr >=  S | <.0001 |  |  |  |  |  |  |  |

| Quantiles (E | Definition 5) |
|--------------|---------------|
| Level        | Quantile      |
| 100% Max     | 9.90          |
| 99%          | 2.33          |
| 95%          | 0.93          |
| 90%          | 0.45          |
| 75% Q3       | 0.03          |
| 50% Median   | 0.00          |
| 25% Q1       | 0.00          |
| 10%          | 0.00          |
| 5%           | 0.00          |
| 1%           | 0.00          |
| 0% Min       | 0.00          |

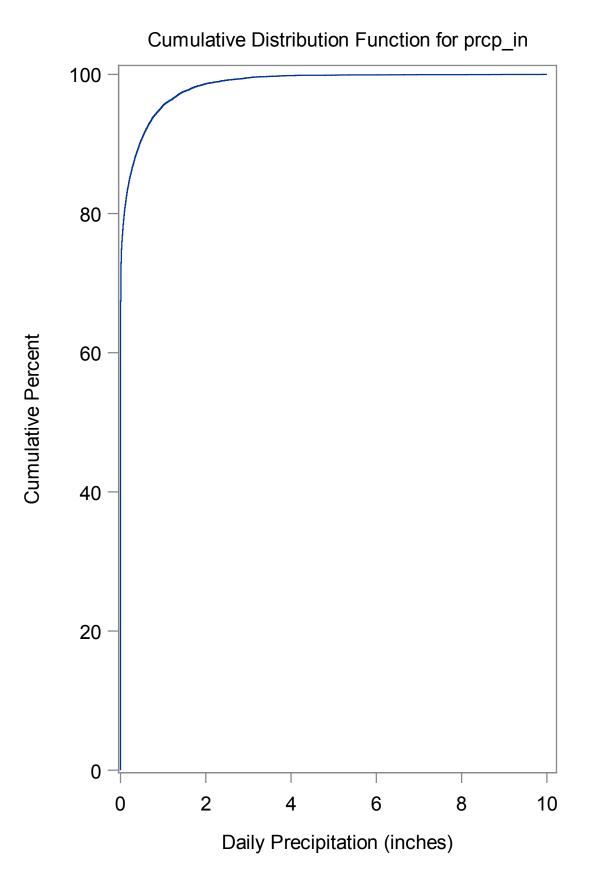
#### The UNIVARIATE Procedure Variable: prcp\_in (Daily Precipitation (inches))


Station=NWFID\_1293\_prcp\_in Site Name=Tuck Property, N. Centerville Rd

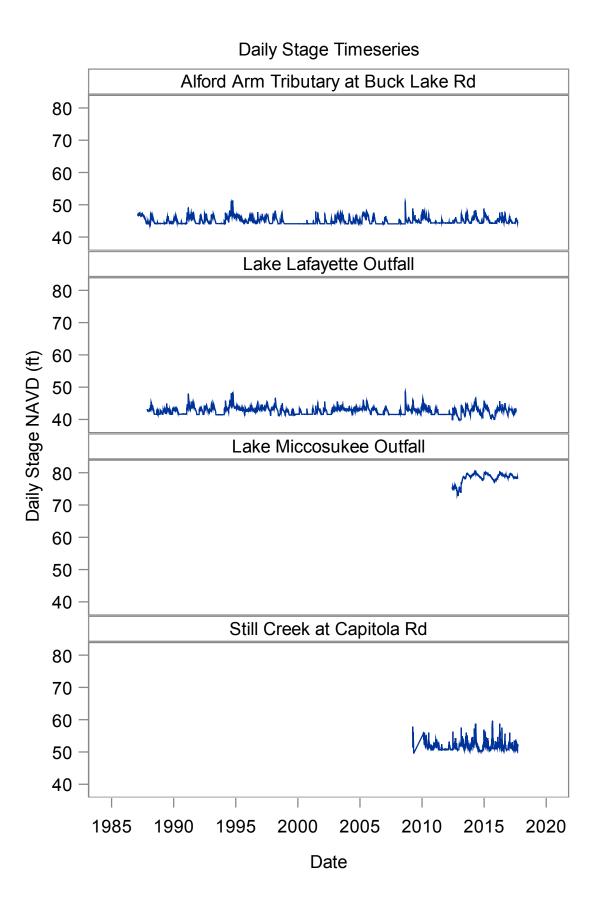
| Ex    | treme Ot | ne Observations |       |  |  |  |  |  |  |
|-------|----------|-----------------|-------|--|--|--|--|--|--|
| Lov   | vest     | Highest         |       |  |  |  |  |  |  |
| Value | Obs      | Value           | Obs   |  |  |  |  |  |  |
| 0     | 44741    | 6.94            | 38863 |  |  |  |  |  |  |
| 0     | 44740    | 8.10            | 36363 |  |  |  |  |  |  |
| 0     | 44739    | 8.65            | 37099 |  |  |  |  |  |  |
| 0     | 44737    | 8.94            | 38807 |  |  |  |  |  |  |
| 0     | 44735    | 9.90            | 41437 |  |  |  |  |  |  |

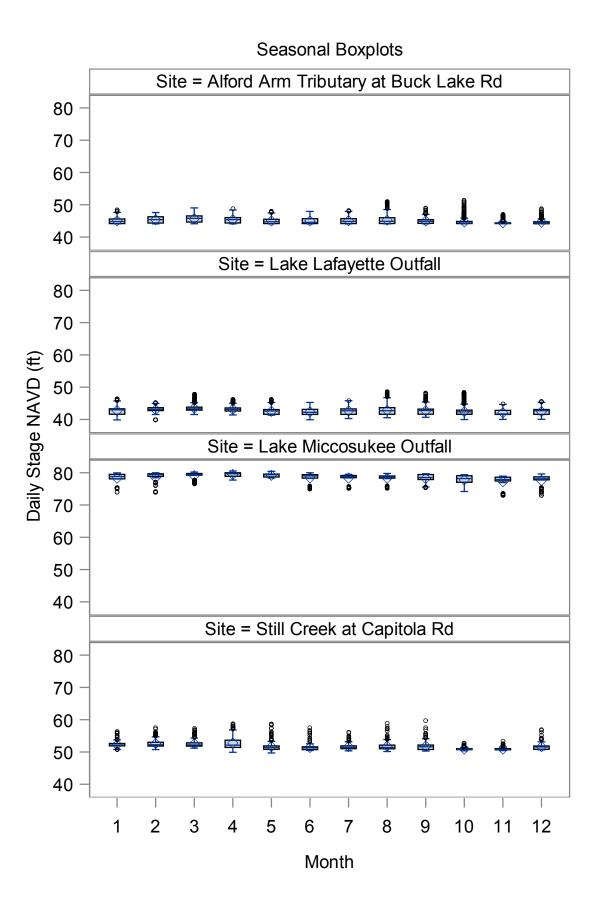
| Missing Values   |       |         |                |  |  |  |  |  |  |
|------------------|-------|---------|----------------|--|--|--|--|--|--|
|                  |       | Perce   | ent Of         |  |  |  |  |  |  |
| Missing<br>Value | Count | All Obs | Missing<br>Obs |  |  |  |  |  |  |
|                  | 51    | 0.46    | 100.00         |  |  |  |  |  |  |

#### The UNIVARIATE Procedure


Station=NWFID\_1293\_prcp\_in Site Name=Tuck Property, N. Centerville Rd




Distribution of prcp\_in


#### The UNIVARIATE Procedure

Station=NWFID\_1293\_prcp\_in Site Name=Tuck Property, N. Centerville Rd



# ATTACHMENT 8 DAILY STAGE DESCRIPTIVE STATISTICS AND PLOTS





## Beginning and End Dates for Daily Stage Stations

| Obs | Site                                 | Date       | Date       |
|-----|--------------------------------------|------------|------------|
| 1   | Alford Arm Tributary at Buck Lake Rd | 01/29/1987 | 09/15/2017 |
| 2   | Lake Lafayette Outfall               | 11/18/1987 | 08/01/2017 |
| 3   | Lake Miccosukee Outfall              | 06/04/2012 | 09/13/2017 |
| 4   | Still Creek at Capitola Rd           | 04/01/2009 | 09/14/2017 |

Site=Alford Arm Tributary at Buck Lake Rd Station=NWFID\_8460

|      |    | Month |    |    |    |    |    |    |    |    |    |    |  |  |
|------|----|-------|----|----|----|----|----|----|----|----|----|----|--|--|
|      | 1  | 2     | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |  |  |
| Year |    |       |    |    |    |    |    |    |    |    |    |    |  |  |
| 1987 | 3  | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 1988 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 1989 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 30 | 30 | 31 |  |  |
| 1990 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 1991 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 1992 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 1993 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 1994 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 1995 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 9  |  |  |
| 1996 | 27 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 1997 | 31 | 28    | 31 | 30 | 31 | 30 | 6  | 25 | 30 | 31 | 30 | 31 |  |  |
| 1998 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 1999 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2000 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2001 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2002 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2003 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2004 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2005 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2006 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2007 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2008 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2009 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2010 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2011 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2012 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2013 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2014 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2015 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2016 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |  |
| 2017 | 31 | 28    | 31 | 30 | 31 | 21 | 31 | 31 | 15 |    |    |    |  |  |

Site=Lake Lafayette Outfall Station=NWFID\_8471

|      |    | Month |    |    |    |    |    |    |    |    |    |    |  |
|------|----|-------|----|----|----|----|----|----|----|----|----|----|--|
|      | 1  | 2     | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |  |
| Year |    |       |    |    |    |    |    |    |    |    |    |    |  |
| 1987 |    |       |    |    |    |    | .  | .  |    |    | 13 | 31 |  |
| 1988 | 31 | 29    | 31 | 30 | 31 | 30 | 27 | 30 | 30 | 31 | 30 | 31 |  |
| 1989 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 1990 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 1991 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 1992 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 1993 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 1994 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 1995 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 1996 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 1997 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 14 | 29 |  |
| 1998 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 1999 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2000 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2001 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2002 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2003 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2004 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2005 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2006 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2007 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2008 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2009 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2010 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2011 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2012 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2013 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2014 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2015 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2016 | 31 | 29    | 31 | 23 | 31 | 30 | 31 | 30 | 18 |    | 12 | 31 |  |
| 2017 | 16 | 9     | 31 | 30 | 31 | 30 | 31 | 1  |    |    |    |    |  |

Site=Lake Miccosukee Outfall Station=NWFID\_11355

|      |    | Month |    |    |    |    |    |    |    |    |    |    |  |
|------|----|-------|----|----|----|----|----|----|----|----|----|----|--|
|      | 1  | 2     | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |  |
| Year |    |       |    |    |    |    |    |    |    |    |    |    |  |
| 2012 |    |       |    |    |    | 27 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2013 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2014 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2015 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2016 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |  |
| 2017 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 13 |    |    |    |  |

Site=Still Creek at Capitola Rd Station=NWFID\_11359

|      |    | Month |    |    |    |    |    |    |    |    |    |    |
|------|----|-------|----|----|----|----|----|----|----|----|----|----|
|      | 1  | 2     | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
| Year |    |       |    |    |    |    |    |    |    |    |    |    |
| 2009 |    |       |    | 30 | 9  |    |    |    |    |    |    |    |
| 2010 |    | 20    | 31 | 29 | 17 | 14 | 31 | 18 | 16 | 31 | 30 | 31 |
| 2011 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2012 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 17 | 30 | 31 | 30 | 31 |
| 2013 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2014 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2015 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 |
| 2016 | 31 | 29    | 31 | 30 | 31 | 30 | 31 | 21 | 24 | 31 | 30 | 31 |
| 2017 | 31 | 28    | 31 | 30 | 31 | 30 | 31 | 31 | 14 |    |    |    |

#### The UNIVARIATE Procedure Variable: Stage\_ft (Daily Stage NAVD (ft))

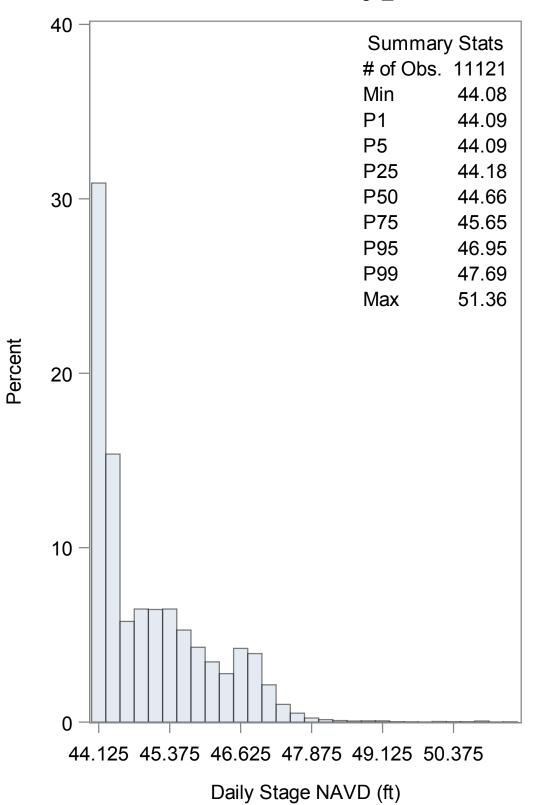
Site=Alford Arm Tributary at Buck Lake Rd Station=NWFID\_8460

| Moments         |                         |                   |            |  |
|-----------------|-------------------------|-------------------|------------|--|
| N               | 11121                   | 11121 Sum Weights |            |  |
| Mean            | 45.0397024              | Sum Observations  | 500886.53  |  |
| Std Deviation   | 1.01912826              | 012826 Variance   |            |  |
| Skewness        | 1.21835842              | Kurtosis          | 1.57620287 |  |
| Uncorrected SS  | 22571329.7 Corrected SS |                   | 11549.4811 |  |
| Coeff Variation | 2.26273311              | Std Error Mean    | 0.009664   |  |

| Basic Statistical Measures |          |                     |         |  |
|----------------------------|----------|---------------------|---------|--|
| Location Variability       |          |                     |         |  |
| Mean                       | 45.03970 | Std Deviation       | 1.01913 |  |
| Median                     | 44.66000 | Variance            | 1.03862 |  |
| Mode                       | 44.12000 | Range               | 7.28000 |  |
|                            |          | Interquartile Range | 1.47000 |  |

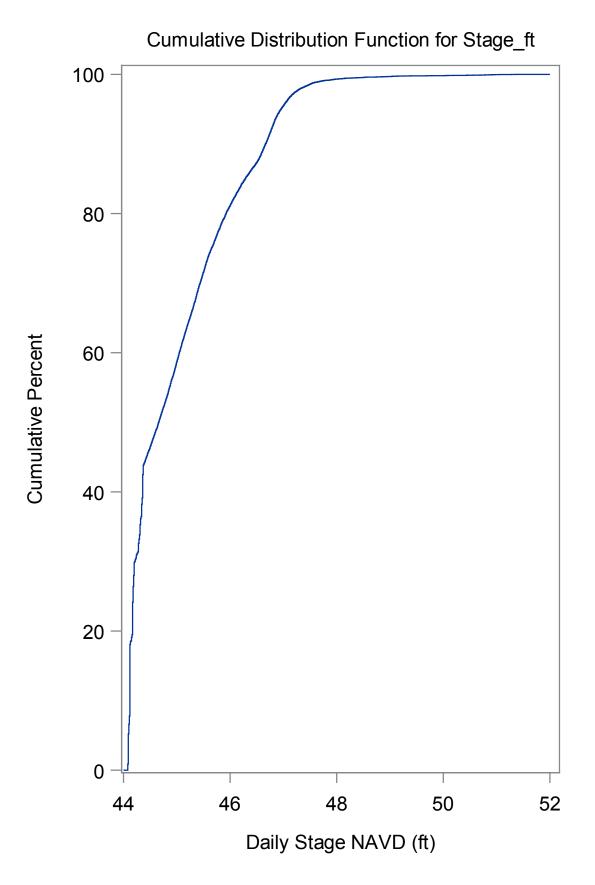
| Tests for Location: Mu0=0 |                   |          |          |        |
|---------------------------|-------------------|----------|----------|--------|
| Test                      | Statistic p Value |          |          |        |
| Student's t               | t 4660.565        |          | Pr >  t  | <.0001 |
| Sign                      | м                 | 5560.5   | Pr >=  M | <.0001 |
| Signed Rank               | s                 | 30921941 | Pr >=  S | <.0001 |

| Quantiles (Definition 5) |          |  |
|--------------------------|----------|--|
| Level                    | Quantile |  |
| 100% Max                 | 51.36    |  |
| 99%                      | 47.69    |  |
| 95%                      | 46.95    |  |
| 90%                      | 46.66    |  |
| 75% Q3                   | 45.65    |  |
| 50% Median               | 44.66    |  |
| 25% Q1                   | 44.18    |  |
| 10%                      | 44.12    |  |
| 5%                       | 44.09    |  |
| 1%                       | 44.09    |  |
| 0% Min                   | 44.08    |  |


#### The UNIVARIATE Procedure Variable: Stage\_ft (Daily Stage NAVD (ft))

Site=Alford Arm Tributary at Buck Lake Rd Station=NWFID\_8460

| Extreme Observations |      |       |      |  |
|----------------------|------|-------|------|--|
| Low                  | est  | High  | nest |  |
| Value                | Obs  | Value | Obs  |  |
| 44.08                | 7819 | 50.94 | 2760 |  |
| 44.08                | 7818 | 50.97 | 2761 |  |
| 44.08                | 7817 | 51.05 | 2806 |  |
| 44.08                | 7816 | 51.28 | 2805 |  |
| 44.08                | 7815 | 51.36 | 2804 |  |


#### The UNIVARIATE Procedure

Site=Alford Arm Tributary at Buck Lake Rd Station=NWFID\_8460



#### The UNIVARIATE Procedure

Site=Alford Arm Tributary at Buck Lake Rd Station=NWFID\_8460



#### The UNIVARIATE Procedure Variable: Stage\_ft (Daily Stage NAVD (ft))

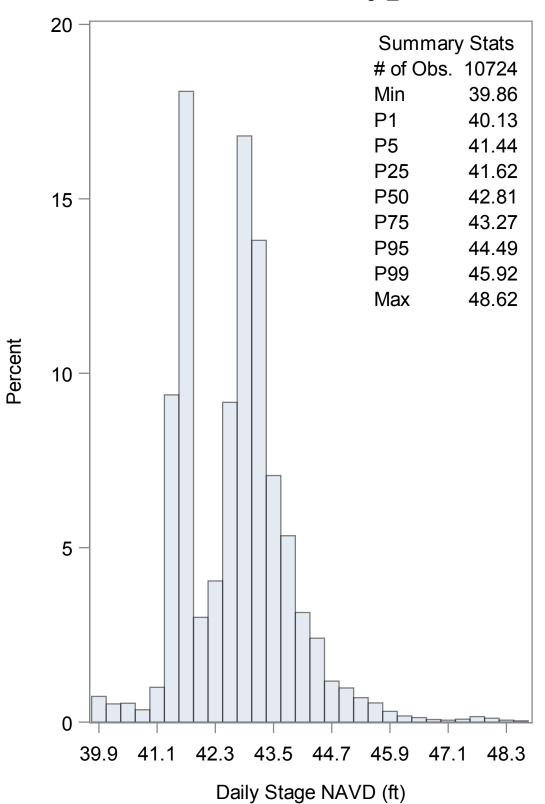
Site=Lake Lafayette Outfall Station=NWFID\_8471

| Moments         |                         |                            |            |  |
|-----------------|-------------------------|----------------------------|------------|--|
| N               | 10724                   | 10724 Sum Weights          |            |  |
| Mean            | 42.701423               | 42.701423 Sum Observations |            |  |
| Std Deviation   | 1.10250591              | 10250591 Variance          |            |  |
| Skewness        | 0.7175172               | 7175172 <b>Kurtosis</b>    |            |  |
| Uncorrected SS  | 19567299.2 Corrected SS |                            | 13034.0133 |  |
| Coeff Variation | 2.58189502              | Std Error Mean             | 0.01064639 |  |

|                      | Basic Statistical Measures |                     |         |  |
|----------------------|----------------------------|---------------------|---------|--|
| Location Variability |                            |                     |         |  |
| Mean                 | 42.70142                   | Std Deviation       | 1.10251 |  |
| Median               | 42.81000                   | Variance            | 1.21552 |  |
| Mode                 | 41.55000                   | Range               | 8.76000 |  |
|                      |                            | Interquartile Range | 1.65000 |  |

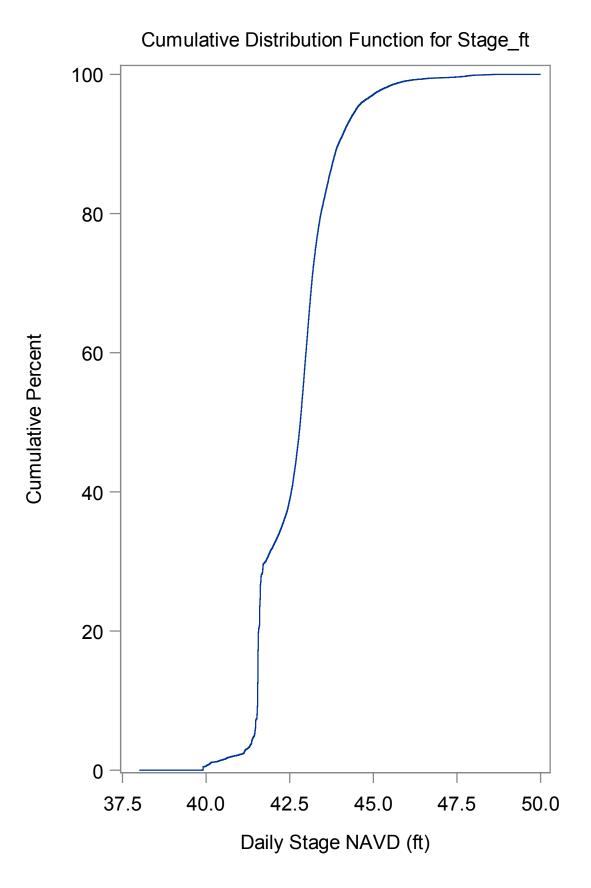
| Tests for Location: Mu0=0 |                   |          |          |        |
|---------------------------|-------------------|----------|----------|--------|
| Test                      | Statistic p Value |          |          |        |
| Student's t               | t 4010.881        |          | Pr >  t  | <.0001 |
| Sign                      | м                 | 5362     | Pr >=  M | <.0001 |
| Signed Rank               | s                 | 28753725 | Pr >=  S | <.0001 |

| Quantiles (Definition 5) |          |  |
|--------------------------|----------|--|
| Level                    | Quantile |  |
| 100% Max                 | 48.62    |  |
| 99%                      | 45.92    |  |
| 95%                      | 44.49    |  |
| 90%                      | 43.96    |  |
| 75% Q3                   | 43.27    |  |
| 50% Median               | 42.81    |  |
| 25% Q1                   | 41.62    |  |
| 10%                      | 41.54    |  |
| 5%                       | 41.44    |  |
| 1%                       | 40.13    |  |
| 0% Min                   | 39.86    |  |


#### The UNIVARIATE Procedure Variable: Stage\_ft (Daily Stage NAVD (ft))

Site=Lake Lafayette Outfall Station=NWFID\_8471

| Extreme Observations |        |       |       |  |
|----------------------|--------|-------|-------|--|
| Lov                  | Lowest |       | hest  |  |
| Value                | Obs    | Value | Obs   |  |
| 39.86                | 20294  | 48.44 | 13630 |  |
| 39.89                | 20293  | 48.48 | 18689 |  |
| 39.90                | 20323  | 48.55 | 18686 |  |
| 39.90                | 20322  | 48.56 | 18688 |  |
| 39.90                | 20297  | 48.62 | 18687 |  |


#### The UNIVARIATE Procedure

Site=Lake Lafayette Outfall Station=NWFID\_8471



#### The UNIVARIATE Procedure

Site=Lake Lafayette Outfall Station=NWFID\_8471



### The UNIVARIATE Procedure Variable: Stage\_ft (Daily Stage NAVD (ft))

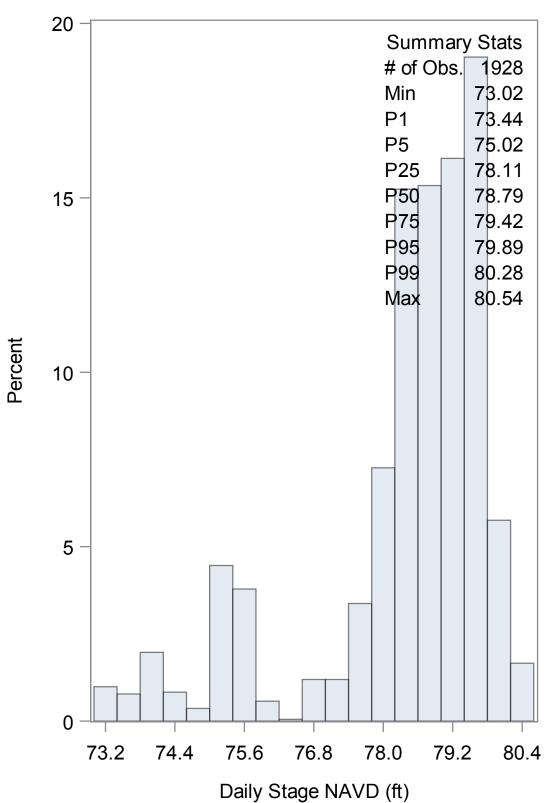
Site=Lake Miccosukee Outfall Station=NWFID\_11355

| Moments         |            |                         |            |  |
|-----------------|------------|-------------------------|------------|--|
| N               | 1928       | 1928 Sum Weights        |            |  |
| Mean            | 78.3674533 | Sum Observations        | 151092.45  |  |
| Std Deviation   | 1.57431983 | 57431983 Variance       |            |  |
| Skewness        | -1.5672546 | -1.5672546 Kurtosis     |            |  |
| Uncorrected SS  | 11845506.6 | 11845506.6 Corrected SS |            |  |
| Coeff Variation | 2.00889497 | Std Error Mean          | 0.03585415 |  |

| Basic Statistical Measures |          |                     |         |  |
|----------------------------|----------|---------------------|---------|--|
| Location Variability       |          |                     |         |  |
| Mean                       | 78.36745 | Std Deviation       | 1.57432 |  |
| Median                     | 78.79000 | Variance            | 2.47848 |  |
| Mode                       | 79.71000 | Range               | 7.52000 |  |
|                            |          | Interquartile Range | 1.31000 |  |

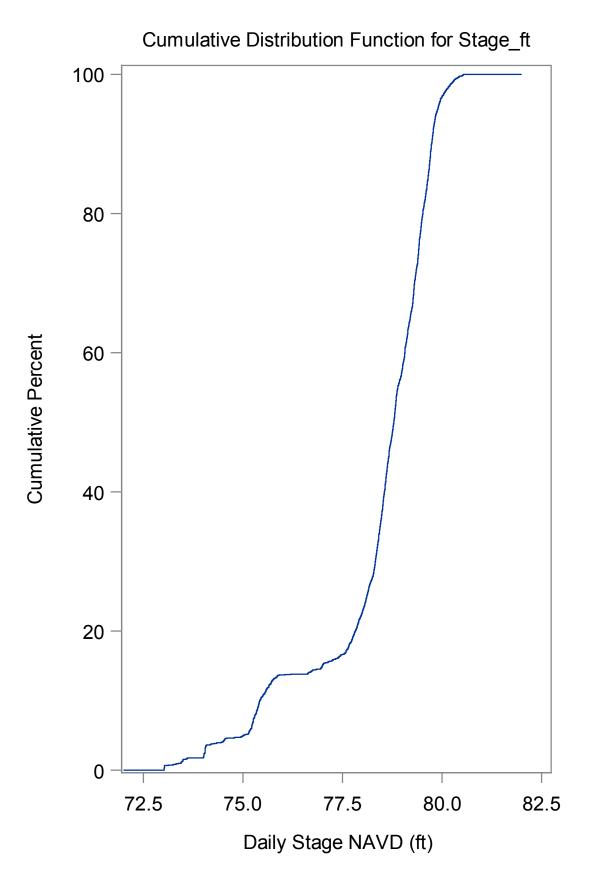
| Tests for Location: Mu0=0 |           |          |          |        |
|---------------------------|-----------|----------|----------|--------|
| Test                      | Statistic |          | p Value  |        |
| Student's t               | t         | 2185.729 | Pr >  t  | <.0001 |
| Sign                      | м         | 964      | Pr >=  M | <.0001 |
| Signed Rank               | s         | 929778   | Pr >=  S | <.0001 |

| Quantiles (Definition 5) |          |  |  |
|--------------------------|----------|--|--|
| Level                    | Quantile |  |  |
| 100% Max                 | 80.54    |  |  |
| 99%                      | 80.28    |  |  |
| 95%                      | 79.89    |  |  |
| 90%                      | 79.74    |  |  |
| 75% Q3                   | 79.42    |  |  |
| 50% Median               | 78.79    |  |  |
| 25% Q1                   | 78.11    |  |  |
| 10%                      | 75.42    |  |  |
| 5%                       | 75.02    |  |  |
| 1%                       | 73.44    |  |  |
| 0% Min                   | 73.02    |  |  |


### The UNIVARIATE Procedure Variable: Stage\_ft (Daily Stage NAVD (ft))

Site=Lake Miccosukee Outfall Station=NWFID\_11355

| Extreme Observations |           |         |       |  |
|----------------------|-----------|---------|-------|--|
| Lowest               |           | Highest |       |  |
| Value                | Value Obs |         | Obs   |  |
| 73.02                | 22028     | 80.48   | 22534 |  |
| 73.02                | 22027     | 80.51   | 22533 |  |
| 73.02                | 22026     | 80.53   | 22530 |  |
| 73.02                | 22025     | 80.53   | 22532 |  |
| 73.02                | 22018     | 80.54   | 22531 |  |


#### The UNIVARIATE Procedure

Site=Lake Miccosukee Outfall Station=NWFID\_11355



#### The UNIVARIATE Procedure

Site=Lake Miccosukee Outfall Station=NWFID\_11355



### The UNIVARIATE Procedure Variable: Stage\_ft (Daily Stage NAVD (ft))

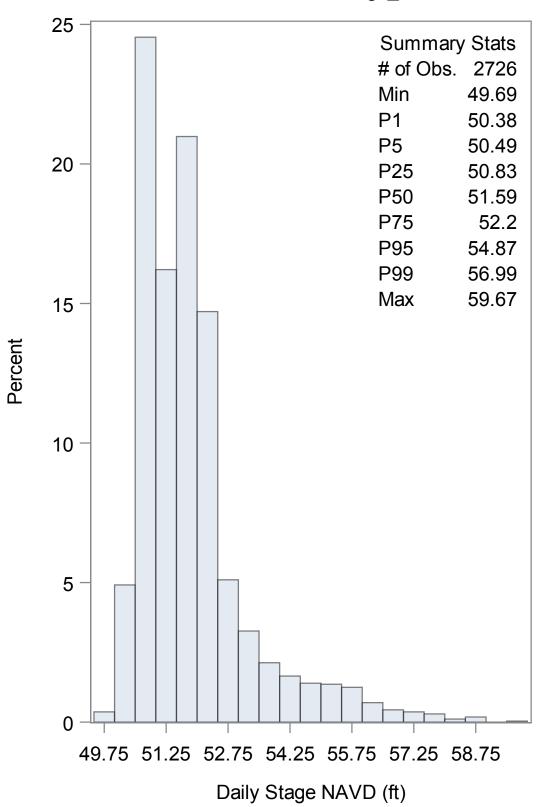
Site=Still Creek at Capitola Rd Station=NWFID\_11359

| Moments         |            |                  |            |  |  |
|-----------------|------------|------------------|------------|--|--|
| N               | 2726       | Sum Weights      | 2726       |  |  |
| Mean            | 51.853584  | Sum Observations | 141352.87  |  |  |
| Std Deviation   | 1.35077629 | Variance         | 1.82459658 |  |  |
| Skewness        | 1.97490245 | Kurtosis         | 4.86434679 |  |  |
| Uncorrected SS  | 7334624.94 | Corrected SS     | 4972.02568 |  |  |
| Coeff Variation | 2.60498153 | Std Error Mean   | 0.02587143 |  |  |

| Basic Statistical Measures |          |                     |         |  |
|----------------------------|----------|---------------------|---------|--|
| Location                   |          | Variability         |         |  |
| Mean                       | 51.85358 | Std Deviation       | 1.35078 |  |
| Median                     | 51.59000 | Variance            | 1.82460 |  |
| Mode                       | 50.72000 | Range               | 9.98000 |  |
|                            |          | Interquartile Range | 1.37000 |  |

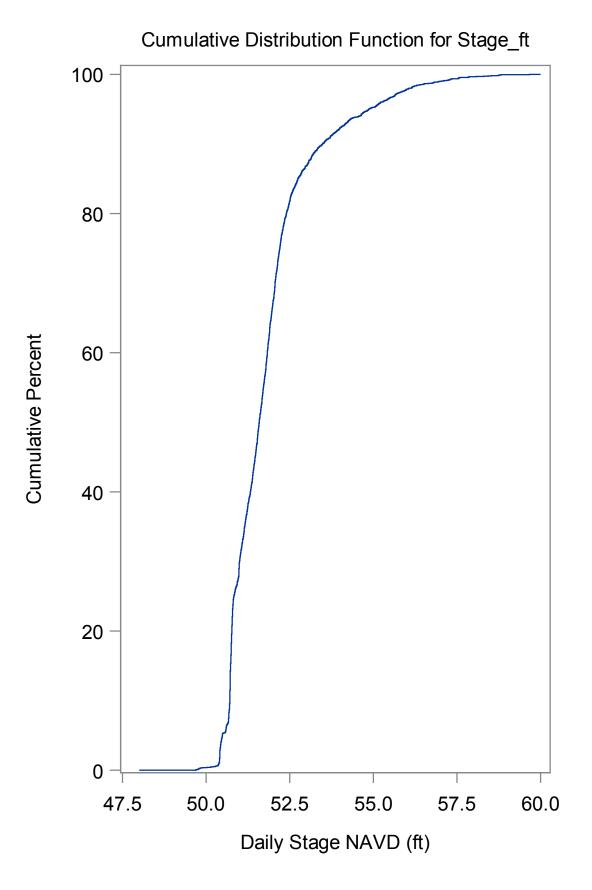
| Tests for Location: Mu0=0 |           |          |          |        |
|---------------------------|-----------|----------|----------|--------|
| Test                      | Statistic |          | p Value  |        |
| Student's t               | t         | 2004.279 | Pr >  t  | <.0001 |
| Sign                      | м         | 1363     | Pr >=  M | <.0001 |
| Signed Rank               | s         | 1858451  | Pr >=  S | <.0001 |

| Quantiles (Definition 5) |          |  |  |
|--------------------------|----------|--|--|
| Level                    | Quantile |  |  |
| 100% Max                 | 59.67    |  |  |
| 99%                      | 56.99    |  |  |
| 95%                      | 54.87    |  |  |
| 90%                      | 53.48    |  |  |
| 75% Q3                   | 52.20    |  |  |
| 50% Median               | 51.59    |  |  |
| 25% Q1                   | 50.83    |  |  |
| 10%                      | 50.71    |  |  |
| 5%                       | 50.49    |  |  |
| 1%                       | 50.38    |  |  |
| 0% Min                   | 49.69    |  |  |


### The UNIVARIATE Procedure Variable: Stage\_ft (Daily Stage NAVD (ft))

Site=Still Creek at Capitola Rd Station=NWFID\_11359

| Extreme Observations |       |         |       |  |
|----------------------|-------|---------|-------|--|
| Lowest               |       | Highest |       |  |
| Value                | Obs   | Value   | Obs   |  |
| 49.69                | 23807 | 58.74   | 25285 |  |
| 49.70                | 23808 | 58.75   | 25273 |  |
| 49.73                | 23806 | 58.79   | 25987 |  |
| 49.77                | 23812 | 58.82   | 25764 |  |
| 49.77                | 23805 | 59.67   | 25774 |  |


#### The UNIVARIATE Procedure

Site=Still Creek at Capitola Rd Station=NWFID\_11359



### The UNIVARIATE Procedure

Site=Still Creek at Capitola Rd Station=NWFID\_11359

