# DUTEX PROPERTY UMBRELLA REGIONAL MITIGATION PLANS FOR FLORIDA DEPARTMENT OF TRANSPORTATION PROJECTS CONCEPTUAL MITIGATION PLAN ESCAMBIA COUNTY, FLORIDA

Prepared for:

Mr. David Clayton Northwest Florida Water Management District 81 Water Management Drive Havana, FL 32333

June 24, 2010

Prepared by:



~ I. KAN

Joshua L. Hofkes Senior Staff Scientist

'nd t

Ann M. Redmond Senior Consultant



# TABLE OF CONTENTS

| 1.0  | PROJECT OVERVIEW AND GOALS                | 1    |
|------|-------------------------------------------|------|
| 2.0  | LOCATION AND LANDSCAPE                    | 1    |
| 3.0  | EXISTING AND RECENT HISTORICAL CONDITIONS | 4    |
| 4.0  | LISTED SPECIES                            | . 11 |
| 5.0  | EXOTIC SPECIES                            | . 12 |
| 6.0  | HISTORIC CONDITIONS                       | . 12 |
| 7.0  | SOILS                                     | . 12 |
| 8.0  | PROPOSED CONDITIONS                       | . 15 |
| 9.0  | RESTORATION PLAN                          | . 21 |
| 9.1  | MITIGATION EFFORT                         | . 22 |
| 9.2  | RESTORATION TECHNIQUES                    | . 22 |
| 10.0 | UMAM ANALYSIS                             | . 28 |
| 10.1 | IMPLEMENTATION ISSUES                     | . 31 |
| 10.2 | PERFORMANCE CRITERIA                      | . 31 |
| 10.3 | LONG-TERM MANAGEMENT                      | . 31 |
| 11.0 | REFERENCES                                | . 31 |

# FIGURE

| Figure 1.  | Location Map                 | 2  |
|------------|------------------------------|----|
| Figure 2.  | USGS Quadrangle Map          | 3  |
| Figure 3A. | Current FLUCCS Map Tract A   | 5  |
| Figure 3B. | Current FLUCCS Map Tract B   | 6  |
| Figure 4.  | Historical Aerial 1951       | 13 |
| Figure 5.  | NRCS Soils Map               | 14 |
| Figure 6A. | Proposed FLUCCS Map Tract A  | 16 |
| Figure 6B. | Proposed FLUCCS Map Tract B  | 17 |
| Figure 7A. | Mitigation Activity Tract A  | 24 |
| Figure 7B. | Mitigation Activity Tract B  | 25 |
| Figure 8A. | UMAM Assessment Area Tract A | 29 |
| Figure 8B. | UMAM Assessment Area Tract B | 30 |
|            |                              |    |

# APPENDICES

| Appen | dix | А. | Observ | ed Pl | lant Spec | cies on | the | Dutex | Property |  |
|-------|-----|----|--------|-------|-----------|---------|-----|-------|----------|--|
|       |     | _  |        |       |           |         |     |       |          |  |

- Appendix B. Observed and Target Wildlife Species on the Dutex Property
- Appendix C. Site Photographs
- Appendix D. UMAM Assessment Area Tract A (western lands)
- Appendix E. UMAM Assessment Area Tract B (eastern lands)



1.0 PROJECT OVERVIEW AND GOALS

ENTRIX, Inc. (ENTRIX) has prepared the following conceptual wetland restoration plan of the Dutex Property (Dutex) for the Northwest Florida Water Management District (NWFWMD). The majority of wetlands within Dutex are degraded due to historical land management practices, primarily fire suppression. The restoration plan was developed together with NWFWMD.

Dutex is comprised of western and eastern tracts, 481.58 and 338.85 acres respectively. For the purposes of this report the western lands will be referred to as Tract A and the eastern lands as Tract B. The majority of the property exists as wetlands that have been identified by NWFWMD as suitable wetland mitigation lands. The wetland mitigation limits were established by NWFWMD following review of historic aerials. To the greatest extent possible, proposed mitigation lands are intended to approximate the sites historic (pre-impact) wetlands limits and community structure. The property's uplands and wetlands will be restored and managed in perpetuity for ecological integrity by NWFWMD.

The following wetland report provides a cursory review of current and historic site conditions as well as a conceptual mitigation plan for all lands slated for mitigation. This review included utilizing aerial interpretation of current and historic aerials, soils mapping and associated community prescription, and ground-truthing of these interpolated features to determine the sites restoration potential. The assessment of historic conditions at the site underscores the extent to which native site conditions have been significantly altered through fire suppression. The prescribed restoration plan is based on the evaluation of these conditions.

Both common and scientific botanical names follow Wunderlin and Hansen (2003) and Andre Clewell (1985); see references in **Section 11.0**. The authorship of scientific names can be obtained in either of these references, and therefore, have been excluded from this report.

# 2.0 LOCATION AND LANDSCAPE

Dutex (Section 36, Township 2S, Range 31W) is approximately 820 acres located in the Perdido watershed between Perdido Bay and Saufley Field (part of the Pensacola Naval Air Station facilities), Escambia County, Florida; see **Figure 1**. The property lies north of Perdido Bay (a Class III water body), bordered by Eleven Mile Creek to the west and Saufley Field, a naval training facility, to the north. Topographic changes within Dutex are detailed on a United States Geological Survey (USGS) Quadrangle map as **Figure 2**.

The Dutex property is entirely undeveloped. A federally constructed and maintained drainage easement associated with the naval air field runs through the middle of the property separating Tracts A and B. Maintained access roads lie along either side of the drainage easement. Tract A contains various dirt roads and ditches. Numerous areas of trash dumping were evident throughout the western portion of the property, as was evidence of previous silviculture activity.

The Department of State, Division of Historic Resources, was contacted concerning possible archaeological sites. They have no record of any archaeological sites and no evidence of any archaeological resources was found during the inspection on this property as reported by The Phoenix Environmental Group (Otto-Allender, 1995).



Date: 03/23/2010 Rev. Date: 04/09/2010 PM: JLH GIS Analyst: JPB Map Document: FIGURE1\_LOCATION.mxd Project Number: 4240-026 PDF Document: FIGURE1\_LOCATION.pdf Plot Size: 8.5 x 11





3.0 CURRENT AND RECENT HISTORICAL CONDITIONS

Historically both subject tracts were subjected to limited silvicultural practices. These included harvest of cypress, slash (*Pinus elliottii*), and longleaf pine (*P. palustris*) followed by site preparation burns and planting of slash pine. Neither tract contains evidence of mechanical soil disturbance, however, due to the absence of fire the understory community diversity and density has been greatly reduced and partially replaced by a thick duff layer in the hydric pine communities. Some signs of historic fire was observed, but limited to the older canopy trees. More recently the property has been impacted by adjacent upstream development and associated stormwater runoff, encroachment of exotic/invasive vegetative species, fire suppression, and beaver activity. These impacts have caused shifts in the overall vegetative community structures and limits of unique plant community assemblages.

The *Florida Land Use, Cover and Forms Classification System* (FLUCCS) was utilized to identify and map the site's ecological communities. The FLUCCS method was designed by the Florida Department of Transportation (FDOT) as a way to develop a unified land use classification system for all land cover and plant communities found throughout Florida. ENTRIX conducted a reconnaissance of Tracts A and B in order to aerially delineate the current limits of the various wetland and upland vegetative communities and land uses. The limits of these communities are detailed on **Figures 3A** and **3B**. Specifically, ENTRIX used high-resolution infrared photography, historic black and white photographs, soils maps, and ground-truthing techniques to determine the community limits. For the purposes of this report vegetative communities by tract are detailed in **Table 1**. A description of the vegetative assemblages found within each community is provided. A complete list of observed plant and wildlife species is provided in **Appendix A** and **B**. A series of site photos is provided as **Appendix C**.

| FLUCCS Code | FLUCCS Community        | Wetland              | Acreage |
|-------------|-------------------------|----------------------|---------|
| Tract A     |                         |                      |         |
| 411         | Mesic Pine Flatwoods    | No                   | 25.88   |
| 434         | Hardwood Conifer Mixed  | No                   | 9.89    |
| 510         | Stream and Waterways    | Yes                  | 3.03    |
| 510D        | Road/Ditch              | Yes                  | 0.89    |
| 524         | Lakes <10 Acres         | Yes                  | 2.31    |
| 534         | Beaver Pond             | Yes                  | 19.34   |
| 611         | Bay Swamp               | Yes                  | 4.78    |
| 613         | Gum Swamp               | Yes                  | 25.87   |
| 614         | Titi Swamp              | Yes                  | 9.07    |
| 625         | Hydric Pine Flatwoods   | Yes                  | 131.74  |
| 627         | Slash Pine Swamp Forest | Yes                  | 43.97   |
| 631         | Wetland Shrub           | Yes                  | 17.67   |
| 641         | Freshwater Marsh        | Yes                  | 77.99   |
| 642         | Saltwater Marsh         | Yes                  | 104.56  |
| 710         | Beaches                 | No                   | 4.31    |
| 747         | Beaver Dam              | No                   | 0.29    |
| Tract B     |                         |                      |         |
| 441         | Pine Plantation         | No                   | 8.58    |
| 611         | Bay Swamp               | Yes                  | 36.09   |
| 614         | Titi Swamp              | Yes                  | 56.54   |
| 627         | Slash Pine Swamp Forest | Yes                  | 167.69  |
| 630         | Wetland Forested Mixed  | Yes                  | 69.94   |
|             | ТО                      | TAL WETLAND ACREAGE  | 771.48  |
|             |                         | COTAL UPLAND ACREAGE | 48.95   |

Table 1. Summary of Current On-site Vegetative Communities on the Dutex Property.

| 484<br>484<br>484<br>484                                       | 641<br>631<br>625<br>741<br>411<br>6    | 411<br>534<br>411 625<br>411 411<br>614 411     | 125                                        |
|----------------------------------------------------------------|-----------------------------------------|-------------------------------------------------|--------------------------------------------|
| 50 494 642 524 524 524 520 500 500 500 500 500 500 500 500 500 | 524<br>510<br>64<br>710<br>710          | 411 511<br>411 4<br>1 613<br>411 625<br>627 411 | D 614<br>627 611<br>627 411 411<br>611 411 |
| TRACT A BOUNDARY - 481.58 AC. +/-                              | 614 - TITI SWAMPS - 9.07AC.             | 710                                             |                                            |
| 411 - MESIC PINE FLATWOODS - 25.88AC.                          | 625 - HYDRIC PINE FLATWOODS - 131.74AC. |                                                 |                                            |
|                                                                | 627 - SLASH PINE SWAMP FOREST - 43.97AC |                                                 |                                            |
| 510 - STREAMS AND WATERWAYS - 3.03AC.                          | 631 - WE I LAND SHRUB - 17.67AC.        |                                                 |                                            |
|                                                                | 641 - FRESHWATER MARSH - 11.99AC.       |                                                 |                                            |
|                                                                | 710 - REACHES - 4 31AC                  |                                                 |                                            |
| 611 - BAY SWAMPS - 4 78AC                                      | 747 - BEAVER DAM - 0 29AC               |                                                 | A Company and the                          |
| 613 - GUM SWAMPS - 25.87AC.                                    |                                         |                                                 | V Part and a second                        |
| 0                                                              | 1,000 2,000 3,00                        | 0 4,000 Feet                                    |                                            |
|                                                                |                                         | J                                               |                                            |

This map and all data contained within are supplied as is with no warranty. Entrix, Inc. expressly disclaims responsibility for damages or liability from any claims that may arise out of the use or misuse of this map. It is the sole responsibility of the user to determine if the data on this map meets the user's needs. This map was not created as survey data, nor should it be used as such. It is the user's responsibility to obtain proper survey data, prepared by a licensed surveyor, where required by law.

# Figure 3A - Current FLUCCS Map Tract A

Dutex Escambia County, Florida



Date: 03/23/2010 Rev. Date: 06/09/2010 PM: JLH GIS Analyst: JPB Map Document: FIGURE3A\_EXISTING\_FLUCCS\_A.mxd Project Number: 4240-026 PDF Document: FIGURE3A\_EXISTING\_FLUCCS\_A.pdf Plot Size: 8.5 x 11



Escambia County, Florida

Coordinate System: NAD 83 FSTPLN FEET

Sec 041 Twp 01 S Rng 31 W Sec 036 Twp 02 S Rng 31 W

Date: 03/23/2010 Rev. Date: 06/09/2010 PM: JLH GIS Analyst: JPB Map Document: FIGURE3B\_EXISTING\_FLUCCS\_B.mxd Project Number: 4240-026 PDF Document: FIGURE3B\_EXISTING\_FLUCCS\_B.pdf Plot Size: 8.5 x 11



# Mesic Pine Flatwoods (FLUCCS 411), 34.46 Acres

This community contains an open-to-dense canopy dominated by slash pine. Understory and shrub layer are overgrown and dense. Black titi (*Cyrilla racemiflora*) was often present in large dense stands. Shrub and low growing woody species observed included dwarf live oak (*Quercus minima*), wax myrtle (*Myrica cerifera*), saw palmetto (*Serenoa repens*), coastal sweet pepperbush (*Clethra alnifolia*), horse sugar (*Symplocos tinctoria*), largeleaf gallberry (*Ilex coriacea*), wooly huckleberry (*Gaylussacia mosieri*), Elliott's blueberry (*Vaccinium elliottii*), shiny blueberry (*V. myrsinites*), Darrow's blueberry (*V. darrowii*), and hairy wicky (*Kalmia hirsuta*).

The duff layer throughout this designation was typically deep and ground cover minimal. Occasional canopy openings often contained relict flatwoods herbaceous species including wiregrass (*Aristida stricta*), downy milkpea (*Galactia volubilis*), Carolina yelloweyed grass (*Xyris caroliniana*), and pale meadowbeauty (*Rhexia mariana*).

# Hardwood Conifer Mixed (FLUCCS 434), 9.89 Acres

This designation included two narrow, linear, upland vegetative communities adjacent to Eleven Mile Creek on the westernmost edge as well as a small area at the southeasternmost corner of Tract A. Areas adjacent to Eleven Mile Creek appear to be stream terraces associated with flood events or shifts in the river channel. This community contains large, mature southern magnolia, slash pine, and red cedar. Understory and shrub species observed include overstory recruits, laurel oak (*Quercus hemisphaerica*), sand live oak (*Q. geminata*), red bay (*Persea borbonia*), yaupon (*Ilex vomitoria*), and sparkleberry (*Vaccinium arboreum*). Groundcover species included muscadine grape (*Vitis rotundifolia*), saw palmetto (*Serenoa repens*), tall elephants foot (*Elephantopus elatus*), bracken fern (*Pteridium aquilinum*), highbush blackberry (*Rubus argutus*), and laurel greenbrier (*Smilax laurifolia*). This community contains a fairly open understory, a deep layer of pine duff, and low percent coverage of ground cover.

#### Stream (FLUCCS 510), 3.03 Acres and Lakes <10 Acres (FLUCCS 523), 3.03 Acres

One small unnamed tidal stream and two small lakes occur within the freshwater marsh in the southcentral portion of Tract A. These habitat features are typical of marsh systems in northwestern Florida. Daily water level fluctuates according to lunar, as well as windblown forces. In addition to the main tributary creek, and upstream pool, a vast network of small rivulets exists most of which drain freshwater runoff from nearby uplands. Salinities within this system range from freshwater to near saline (30 ppt) dependent on local rainfall and tide cycle. The edges of the marsh creek and rivulets offer essential habitat for a variety of brackish fish species such as killifishes (*Fundulus* spp.), silversides (*Menidia* sp.), mullet (*Mugil* sp.), and pinfish (*Lagodon* sp.). The marsh system also serves as important nursery grounds for commercially important species such as blue crabs (*Callinectessapidus*), oysters (*Crassostrea* sp.), and Penaeidae. The upstream pools serve as refugia during low tide periods. This designation also includes portions of Eleven Mile Creek on the western edge of Tract A. One small patch of wild taro (*Colocasia esculenta*) was observed growing within Eleven Mile Creek.

# Ditches and Roads (FLUCCS 510D), 0.89 Acre

A system of primarily wetland cut ditches and associated roads occur across Tract A. These ditches are associated with either an existing or historic fill road. These ditches were likely created as a result of fill road construction and not for the sole purpose of wetland drainage. Commonly observed ditch vegetation includes southern umbrellasedge (*Fuirena sciroides*), manyhead rush (*Juncus polycephalus*), fringed beaksedge (*Rhynchospora ciliaris*), needlepod rush (*Juncus scirpoides*), fascicled beaksedge (*Rhynchospora fascicularis*), torpedograss (*Panicum repens*), and common water-hyacinth (*Eichhornia*)



crassipes). Roads/trails not slated for removal as proposed by this restoration plan were not located and are not depicted on any figures in this report.

# Beaver Pond (FLUCCS 534), 19.34 Acres

This feature was created through the flooding of a gum swamp. Downstream wetlands appear sufficiently hydrated and vegetative structure appropriate. Remnant tree stumps and standing dead cypress trees are present throughout this community. The center of this community designation contains a large area of floating and emergent herbaceous vegetation. Herbaceous vegetation is also rooted on persisting hummocks and cypress buttresses. Deeper inundated lands are dominated by fragrant water lily (Nymphaea odorata). Vegetation observed included white-topped pitcherplant (Sarracenia leucophylla). southern umbrellasedge (Fuirena scirpoidea), saltmarsh umbrellasedge (F. breviseta), wooly witchgrass (Dichanthelium scabriusculum), acid swamp yelloweyed grass (Xyris serotina), purple love grass (Eragrostis refracta), hairy primrosewillow (Ludwigia pilosa), slender beaksedge (Rhynchospora gracilenta), bunched beaksedge (Rhynchospora cephalantha), and switch grass (Panicum virgatum).

# Bay Swamp (FLUCCS 611), 40.87 Acres

This community is limited to the northwestern corner of Tract B. This vegetative assemblage occupies both historic forested wetland and hydric pine savanna. This community likely expanded into hydric savannas and hydric pine flatwoods due to a reduction in the fire return interval. The near complete canopy closure and shading reduced the mid and understory cover. Several small creek systems were present and became more defined closer to the bay.

This community designation is dominated by sweetbay. Additional canopy species observed include tulip popular (Liriodendron tulipifera), swamp bay (Persea palustris) and red maple (Acer rubrum). Slash pines were occasionally present as canopy trees. Although no cypress species were observed within this community, several small cypress stumps were present. Herbaceous groundcover was dominated by Additional species observed included poison ivy, evergreen bayberry (Myrica sensitive fern. caroliniensis), Virginia chain fern, and littlehead nutrush (Scleria oligantha), common boneset (Eupatorium perfoliatum), water cowbane (Oxypolis filiformis), mild waterpepper (Polygonum cf. hydropiperoides), possumhaw (Viburnum nudum), fringed velloweved grass (Xyris fimbriata), hairy maiden fern (Thelypteris hispidula), lax hornpod (Mitreola petiolata), irisleaf yelloweyed grass (Xyris laxifolia var. iridifolia) and marsh fern (Thelypteris palustris). A large amount of Chinese privet (Ligustrum sinense) is present throughout the northern half of this community.

# Gum Swamp (FLUCCS 613), 25.87 Acres

This system occurs immediately south of the beaver dam and grades into the freshwater marsh. Very few large tree specimens were observed within this community, and were primarily limited to a few pond cypress and slash pine. Shrub growth was primarily limited to rooting on hummocks. Some cypress cut stumps were observed. Pond cypress recruitment was also present.

This community is typified by an open canopy comprised of swamp tupelo (*Nyssa sylvatica* var. *biflora*), sweetbay, red maple, swamp bay, as well as occasional slash pine and pond cypress (Taxodium ascendens). Understory trees and shrubs included overstory recruits, red chokeberry (Photinia pyrifolia), fetterbush, highbush blueberry (Vaccinium corymbosum), dahoon (Ilex cassine), Virginia willow (Itea virginica), and wax myrtle. Herbaceous species observed include royal fern (Osmunda regalis var. spectabilis), threeway sedge (Dulichium arundinaceum), Virginia marsh St. John's-wort (Triadenum virginicum). Virginia chain fern (Woodwardia virginica), cinnamon fern (Osmunda cinnamomea), clustered sedge (Carex glaucescens), and string-lily (Crinum americanum).



One small isolated polygon, immediately north of a fill road within the eastern-central portion of Tract A, historically appeared to be part of a larger bay swamp (FLUCCS 611). This community's current state may be attributed to lengthened hydroperiod due to pooling of water resultant from the installation of the fill road.

# Titi Swamp (FLUCCS 614), 65.61 Acres

This vegetative community occurs on the northeastern corner of Tract A. Vegetation is dominated by pure stands of very dense 15-20 foot tall black titi (*Cliftonia monophylla*). The few canopy trees present are limited to 40-60-foot tall slash pine. No slash pine recruitment was observed. Additional shrub species were a minor component of this community and included fetter bush and gallberry. No herbaceous groundcover vegetation was observed.

# Hydric Pine Flatwoods (FLUCCS 625), 131.74 Acres

This forested wetland community covers the majority of Tract A and encompasses the majority of lands historically occupied by hydric flatwoods and hydric savannas. Canopy trees within this community are dominated by slash pine. Pine height on average appeared to be 50-60 feet, and throughout slash pine recruitment was low. Few large, flat-topped slash pines were observed. The understory throughout was typically dense containing sweetbay, myrtle leafed holly (Ilex cassine var. myrtifolia), large gallberry (I. coriacea), red bay, Elliott's blueberry (Vaccinium elliottii), highbush blueberry, Virginia willow, swamp tupelo, gallberry, red maple, and black titi.

The duff layer throughout this designation was typically deep, replacing most of the ground cover vegetation. Occasional canopy openings often contained relict hydric flatwoods herbaceous species including wiregrass, Carolina yellow-eyed grass (Xyris caroliniana), hairy wicky, bracken fern, foxtail club moss (Lycopodiella alopecuroides), whitehead bogbutton (Lachnocaulon anceps), redroot (Lachnanthes caroliniana), yellow hatpins (Syngonanthus flavidulus), slender beaksedge (Rhynchospora gracilenta), narrowfruit horned beaksedge (Rhynchospora cf. inundata), Camphorweed (Pluchea sp.), woolly witchgrass (Dichanthelium scabriusculum), switchgrass (Panicum virgatum), loosehead beaksedge (Rhynchospora chalarocephala), irisleaf yelloweyed grass (Xyris laxifolia var. iridifolia), Elliott's yelloweyed grass (Xyris elliottii), manyspike flatsedge (Cyperus polystachyos), oneflower honeycombhead (Balduina uniflora), pale meadowbeauty, savanna meadowbeauty (R. alifanus), maid marian (R. nashii), blue maidencane (Amphicarpum muhlenbergianum), tapered witchgrass (Dichanthelium acuminatum), pineland yelloweyed grass (Xyris stricta), and Chapman's beaksedge (Rhvnchospora chapmanii).

# Slash Pine Swamp Forest (FLUCCS 627), 211.66 Acres

This community designation includes forested wetlands in which slash pine dominates the canopy. Historically these areas were occupied by pine flatwoods, hydric flatwoods, hydric savannas, and bay swamps. Due to fire exclusion, and possible off-site changes in hydrology, slash pine has been able to encroach into these systems. Vegetative assemblages and structure are comprised of a combination of the plant communities historically present. Numerous large "cat faced" slash and several longleaf pines are present on the southeasternmost corner of Tract B. Longleaf pine was not observed anywhere else within the Dutex property. Understory vegetation was sparse due to canopy cover, and wire grass was absent from these areas.

# Wetland Forested Mixed (FLUCCS 630), 69.94Acres

This community occurs on the southeastern corner of Tract B. This designation represents mixed wetland forest communities in which neither hardwoods nor conifers achieve dominance of the crown canopy



Vegetative assemblages and structure are comprised of a combination of the plant composition. communities historically present.

# Wetland Shrub (FLUCCS 6312), 17.67 Acres

Canopy trees are essentially absent from this community. Several trees species, predominately slash pine, are occasionally present throughout. Shrub density typically exceeds ten feet in height. Characteristic shrubs observed included titi (Cyrilla racemiflora), black titi (Cliftonia monophylla), fetterbush (Lyonia lucida), large gallberry (Ilex coriacea), gallberry (I. glabra), wax myrtle (Myrica cerifera), and sweet pepperbush (Clethra alnifolia), and shrubs are often laced together with laurel greenbrier. Herbs are sparse, patchy, and confined to sunny openings.

# Freshwater Marsh (FLUCCS 641), 77.99 Acres

A freshwater marsh dominates the southeastern half of Tract A. Additionally, two small disjunct freshwater marshes occur within the northwestern corner of Tract A. The northernmost of these marshes is an oxbow of Eleven Mile Creek. Tree species were occasionally observed and with the exception of slash pine, typically small in stature. Herbaceous vegetation occurs as a mosaic of nearly pure stands of saw grass (Cladium jamaicense) to areas containing combinations of saw grass, wool-grass bulrush (Scirpus cyperinus), Leconte's flatsedge (Cyperus lecontei), wand loosestrife (Lythrum lineare), bighead rush (Juncus megacephalus), fragrant flatsedge (Cyperus odoratus), herb-of-grace (Bacopa monnieri), torpedograss (Panicum repens), switchgrass (Panicum virgatum), rough barnyard grass (Echinochloa muricata), conecup spikerush (Eleocharis tuberculosa), comfort root (Hibiscus aculeatus), water cowbane (Oxypolis filiformis), and dotted smartweed (Polygonum punctatum).

# Saltwater Marsh (FLUCCS 642), 104.56

A salt marsh dominates the southwestern half of Tract A. Salt marshes are intertidal areas colonized by grasses and other salt-tolerant plants (halophytes). Two vegetation zones are often observed, a low marsh that is subject to daily tidal flooding and a high marsh that is flooded less often. Due to a small beach area and extensive coastal erosion, the low marsh was limited to a patchy fringe dominated by smooth cordgrass (Spartina alterniflora). The majority of the site was dominated by a high marsh dominated by an extensive expanse of black needlerush (Juncus roemerianus) with a few associated species. Additionally observed species included marshay cordgrass (Spartina patens), rattlebox (Sesbania punicea), smallflower thoroughwort (Eupatorium semiserratum), wand loosestrife (Lythrum lineare), common reed (Phragmites australis), torpedograss (Panicum repens), coastal groundcherry (Physalis angustifolia), switchgrass (Panicum virgatum), saltmarsh morning glory (Ipomoea sagittata), seaside goldenrod (Solidago sempervirens), seashore mallow (Kosteletzkya virginica), and salt marsh aster (Aster tenuifolius).

# Beaches (FLUCCS 710), 4.31 Acres

This community occurs between Perdido Bay and the freshwater and saltwater marsh on Tract A. The shoreline exhibits evidence of being subjected to high energy wave/wind action. Shoreline erosion is evident by stumps 15-20 feet out in the bay. This shoreline is primarily bare mineral soil with occasional vegetative encroachment from the immediately adjacent freshwater and saltwater marsh. Several exotic species including Chinese tallow and rattlebox (Sesbania punicea) were occasionally present.

# Beaver Dam (FLUCCS 747), 0.29 Acre

One large earthen beaver dam occurs on the north central portion of Tract A. The dam is approximately 1,283 feet in length, upwards of 6 feet in height and potentially 15-20 feet wide at the base. Wetlands downstream of the dam appear sufficiently hydrated and vegetative structure appropriate.



#### 4.0 LISTED SPECIES

All incidental listed wildlife and botanical observations were recorded. Surveys were conducted concurrently with habitat mapping and overall site assessments. Prior to initiating site-specific surveys, ENTRIX obtained information from the Florida Natural Areas Inventory (FNAI) and Florida Fish and Wildlife Conservation Commission (FFWCC) databases of known listed and rare species occurrences within the project vicinity. Focus was given on identification of these species as well as other species known to occur locally.

Site-specific surveys were initiated to determine the presence/absence of the saltmarsh topminnow (*Fundulus jenkinsi*). Wildlife species are listed under the *Endangered Species Act* of 1973, and Chapter 39.27 *Florida Administrative Code* (FAC). On August 18, 2008, ENTRIX ecologists sampled for the species within an unnamed bayou located approximately one-half mile east of the mouth of Eleven Mile Creek.

The saltmarsh topminnow occupies tidal streams, bayous, and rivulets along the Gulf of Mexico coast ranging from Galveston, Texas to Pensacola, Florida (Boschung and Mayden 2004). This species prefers *Spartina* habitat with low to moderate salinity and has been historically recorded within the lower Eleven Mile Creek drainage (*pers. comm.* Dr. Mark Peterson). The saltmarsh topminnow is considered a 'Species of Special Concern' by the State of Florida and was listed by the Federal Register in 1997 as a candidate species for federal protection (Vol.62: 134).

Six Breder traps were deployed at strategic locations throughout the bayou; see **Table 2**. Traps were positioned along the banks using PVC-pipe harnesses so that the apertures faced into the freshwater marsh; see photo in **Appendix B**. This method, as described by Peterson *et al.* (2003), is considered the most appropriate and practical mode of capture for the species.

| Station | Longitude        | Latitude         |
|---------|------------------|------------------|
| 1       | 30° 27' 33.31" N | 87° 22' 03.26" W |
| 2       | 30° 27' 34.27" N | 87° 22' 03.80" W |
| 3       | 30° 27' 35.64" N | 87° 22' 01.65" W |
| 4       | 30° 27' 38.33" N | 87° 22' 00.42" W |
| 5       | 30° 27' 38.27" N | 87° 21' 58.70" W |
| 6       | 30° 27' 39.78" N | 87° 21' 58.11" W |

Table 2. Breder Trap Locations.

Salinities at the time of deployment ranged from 10.4 ppt at Station 1 (downstream) to 7.5 ppt at Station 6 (upstream). Water temperature and dissolved oxygen at these stations measured 28.4 and 27.3, and 6.3 and 4.5, respectively. Traps were allowed an approximately four-hour soak period timed to occur during ebb tide. Tidal fluctuations during the sampling period were minimal (<0.6 inches) as is common in northern Perdido Bay. No individuals were captured during the August 2008 sampling event. However, based on available habitat and historical records we conclude that presence of *F. jenkinsi* is probable and should not be confirmed or denied without additional sampling.

Listed vegetative species observed included Water sundew (*Drosera intermedia*), white topped pitcher plant (*Sarracenia leucophylla*), and yellow fringed orchid (*Platanthera ciliaris*) were observed during site visits. Water sundew and white topped pitcher plant are common throughout the beaver pond (FLUCCS 534). A single specimen of yellow fringed orchid was observed in the bay swamp (FLUCCS 611) in the northwestern corner of Tract B. No listed wildlife species were observed.



#### 5.0 **EXOTIC SPECIES**

Invasive plants affect forest health, productivity, and limit species diversity of native forests. These plants replace native plant species and often form exotic monocultures. In many cases these stands of exotic plants are not beneficial to native wildlife which has evolved to depend on native plants for food and shelter, and who in turn distributes of native plants by seed dispersal. When exotic plants replace too much of our native plants, those wildlife dependent on native plants will move away or become extirpated. Exotic invasive plant species also reduce or eliminate resources, *i. e.*, food, cover, nesting sites, used by native wildlife and can promote populations of invasive non-native wildlife by providing them with resources otherwise unavailable in the area. Several exotic and invasive non-native plant species were observed within the project limits during site survey events. A summary of exotic species observed, location and approximate population size is provided in Table 3.

| Scientific Name      | Common Name               | Observation Point                                              | <b>Population/Distribution</b> |
|----------------------|---------------------------|----------------------------------------------------------------|--------------------------------|
| Colocasia esculenta  | wild taro                 | Eleven Mile Creek; western edge of Tract A                     | small/single point             |
| Eichhornia crassipes | common water-<br>hyacinth | Throughout ditch adjacent to beaver dam;<br>Tract A            | medium                         |
| Ligustrum sinense    | Chinese privet            | Northern edge of Tract B                                       | large/wide spread              |
| Lygodium japonicum   | Japanese climbing fern    | Northern edge of Tract B                                       | small/rare                     |
| Panicum repens       | Torpedo grass             | Ditch adjacent to beaver dam, beach, freshwater marsh; Tract A | medium/wide spread             |
| Sapium sebiferum     | Chinese tallow tree       | Beach; Tract A: Northern edge of Tract B                       | small/sparse                   |
| Sesbania punicea     | rattlebox                 | Beach; Tract A                                                 | small/sparse                   |

 Table 3
 Summary of Invasive Botanical Species Observed within the Dutex Property.

To retain the natural biological components of the Dutex property, management of non-native invasive plants should utilize an integrated management approach, incorporating a combination of mechanical and chemical techniques. Proposed exotic species management is described Section 9.3.

#### 6.0 HISTORIC CONDITIONS

Black-and-white 1940 and 1951 historical aerial photographs were evaluated to provide the most complete illustration and highest resolution images available, and were, therefore, selected as the best representation of historic vegetative communities and distribution patterns. Historic aerials suggest that pre-impact communities within mitigation lands were comprised primarily of hydric savannas, hydric flatwoods, wetland shrub, fresh/saltwater marsh and hardwood sloughs. A historic aerial is provided as Figure 4. Due to the complete aerial coverage of the 1951 aerials, these were georeferenced and tiled to create an image depicting the historic site conditions of the Dutex property.

#### 7.0 SOILS

The Natural Resources Conservation Service (NRCS) soils manual was utilized to determine the approximate extent of the different soil units known to exist within the project site. Additionally, the Hydric Soils of Florida Handbook, Fourth Edition, was utilized to evaluate the potential presence of hydric soils. The locations and limit of individual soil units within the each tract are depicted on Figure 5. According to the NRCS soil survey for Escambia County, Florida (USDA, 1996) ten soil units are present within the subject tracts. Table 4 as well as listing the soils types also lists the type of plant community/landform that typically occupies each soil type in the undisturbed condition.



Date: 03/23/2010 Rev. Date: 04/09/2010 PM: JLH GIS Analyst: JPB Map Document: FIGURE4\_HISTORIC\_AERIAL.mxd Project Number: 4240-026 PDF Document: FIGURE4\_HISTORIC\_AERIAL.pdf Plot Size: 8.5 x 11

| TRACT A BOUNDARY - 481.58 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +/- C 47 - HURRICANE AND ALBANY SOILS, 0 TO 5 PERCENT SLOPES - 3.12AC. C +/- |                                                                                                |                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 - PIC KNEY SAND - 133.65AC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49 - DORAVAN MUCK AND FLUVAQUENTS, FREQUENTLY FLOODED - 132.06AC.            |                                                                                                |                                                                                                                                                                                                     |
| 6 - DIREGO MUCK, TIDAL - 183.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AC. 50 - BIGBEE-GARCON-FLUVAQUENTS COMPLEX, FLOODED - 12.02AC.               | L - 219.49AC.                                                                                  |                                                                                                                                                                                                     |
| 9 - LEON SAND - 10.81 AC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99 - WATER - 3.86AC. 5 TO 8 PERCENT SLOP                                     | PES - 0.31AC.                                                                                  |                                                                                                                                                                                                     |
| 43 - ALBANT SAND, U IU S PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              | LIVILI FLOODED - 19.00AG.                                                                      |                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U 7,500 3,000 4,500 6,000 Feet                                               |                                                                                                |                                                                                                                                                                                                     |
| This map and all data contained within are<br>supplied as is with no warranty. Entrix, Inc.<br>expressly disclaims responsibility for damages<br>or liability from any claims that may arise out<br>of the use or misuse of this map. It is the sole<br>responsibility of the user to determine if the<br>data on this map meets the user's needs. This<br>map was not created as survey data, nor<br>should it be used as surve, this the user's<br>responsibility to obtain proper survey data,<br>prepared by a licensed surveyor, where<br>required by law. | Figure 5 - NRCS Soils Map<br>Dutex<br>Escambia County, Florida               | Image: 2007 NC<br>Sec 041<br>Twp 01 S<br>Reg 020<br>Twp 02 S<br>Twp 02 S<br>Rng 31 W<br>Coordi | Down to Earth. Down to Business."           .akeshore Drive, Suile 100         pr. (850) 681-9700           ee, FL 32312         fr. (850) 681-9741           www.entrix.com         www.entrix.com |



| Soil<br>Number | Soil Type                                          | Acreage | Percent<br>Hydric | Typical Landform          |
|----------------|----------------------------------------------------|---------|-------------------|---------------------------|
| Tract A        |                                                    |         |                   |                           |
| 4              | Pickney Sand                                       | 133.65  | 100               | Hydric Flatwoods          |
| 6              | Dirego Muck, Tidal                                 | 183.23  | 100               | Tidal Marshes             |
| 9              | Leon Sand                                          | 10.81   | 10                | Flatwoods                 |
| 43             | Albany Sand, 0 to 5 Percent Slopes                 | 3.19    | 5                 | Ridges/Rises              |
| 47             | Hurricane and Albany Soils, 0 to 5 Percent Slopes, | 3.12    | 5                 | Stream Terrace            |
| 47             | Occasionally Flooded                               | 5.12    | 5                 | Stream Terrace            |
| 49             | Doravan Muck and Flavaquents, Frequently Flooded   | 132.06  | 100               | Floodplain                |
| 50             | Bigbee-Garcon-Flavaquents Complex, Flooded         | 12.02   | 35                | Stream Terrace/Floodplain |
| 99             | Water                                              | 3.86    | 100               | Water                     |
| Tract B        |                                                    |         |                   |                           |
| 4              | Pickney Sand                                       | 100.26  | 100               | Hydric Flatwoods          |
| 5              | Crotan and Pickney Soils, Depressional             | 219.49  | 100               | Depression                |
| 39             | Bonifay Loamy Sand, 5 to 8 Percent Slopes          | 0.31    | 0                 | Ridges                    |
| 49             | Doravan Muck and Flavaquents, Frequently Flooded   | 19.06   | 100               | Floodplain                |

 Table 4. USDA NRCS Soil Types on the Dutex Property.

# 8.0 **PROPOSED CONDITIONS**

Historic and current vegetative communities were compared to identify changes in community structure or community limits. Large shifts were observed in both the overall position of vegetative communities within the landscape and community coverage. The greatest shifts in community limits occurred with the conversions of sparsely canopied hydric pine flatwoods and hydric savannas to densely forested wetland systems containing often dense understory of black titi and titi.

The mitigation goals are to re-establish historic vegetative assemblages and community limits within each tract to the greatest extent possible. This goal will be achieved through hydrologic improvements, supplemental planting, forest thinning, and prescribed burns. The vegetative community limits and designations within the tract were identified following field investigations and review of historic and current aerial photography.

A total of fourteen community types have been identified as historically occurring throughout the Dutex property. Target communities include primarily hydric flatwoods as well as forested and herbaceous wetlands. Additional restoration activities are also proposed within upland mesic flatwoods and hardwood-conifer mixed communities. Target conditions, with appropriate continued management, will be similar to historical native structure and vegetative assemblages as shown in **Figures 6A** and **6B** and as further described. Target community types and acreages are approximated based on aerial interpretation of 1944 and 1951 historical aerials. A summary of the target vegetative community assemblages/land uses within both Tracts A and B following restoration and/or enhancement activities are detailed in **Table 5**. Descriptions typifying the historic/target communities, as described by FNAI and FLUCCS handbook are also provided.



This map and all data contained within are: supplied as is with no warranty. Entrix, Inc. expressly disclaims responsibility for damages or liability from any claims that may arise out of the use or misuse of this map. It is the sole responsibility of the user to determine if the data on this map meets the user's needs. This map was not created as survey data, nor should it be used as such. It is the user's responsibility to obtain proper survey data, prepared by a licensed surveyor, where required by Jaw.

# Figure 6A - Proposed FLUCCS Map Tract A

Dutex Escambia County, Florida



Date: 03/23/2010 Rev. Date: 06/09/2010 PM: JLH GIS Analyst: JPB Map Document: FIGURE6A\_TARGET\_FLUCCS\_A.mxd Project Number: 4240-026 PDF Document: FIGURE6A\_TARGET\_FLUCCS\_A.pdf Plot Size: 8.5 x 11



This map and all data contained within are supplied as is with no warranty. Entrix, Inc. expressly disclaims responsibility for damages or liability from any claims that may arise out of the use or misuse of this map. It is the sole responsibility of the user to determine if the data on this map meets the user's needs. This map was not created as survey data, nor should it be used as such. It is the user's responsibility to obtain proper survey data, prepared by a licensed surveyor, where required by law.

# Figure 6B - Proposed FLUCCS Map Tract B

Dutex Escambia County, Florida



Date: 03/23/2010 Rev. Date: 06/09/2010 PM: JLH GIS Analyst: JPB Map Document: FIGURE6B\_TARGET\_FLUCCS\_B.mxd Project Number: 4240-026 PDF Document: FIGURE6B\_TARGET\_FLUCCS\_B.pdf Plot Size: 8.5 x 11



| FLUCCS Code | FLUCCS Community          | Acreage     |        |  |  |  |  |  |
|-------------|---------------------------|-------------|--------|--|--|--|--|--|
| Tract A     |                           |             |        |  |  |  |  |  |
| 411         | Mesic Pine Flatwoods      | No          | 27.26  |  |  |  |  |  |
| 434         | Hardwood-Conifer Mix No   |             |        |  |  |  |  |  |
| 510         | Stream and Waterways Yes  |             |        |  |  |  |  |  |
| 510D        | Ditch                     | Yes         | 0.76   |  |  |  |  |  |
| 524         | Lake (less than 10 acres) | Yes         | 2.31   |  |  |  |  |  |
| 611         | Bay Swamp                 | Yes         | 38.29  |  |  |  |  |  |
| 613         | Gum Swamp                 | Yes         | 36.28  |  |  |  |  |  |
| 614         | Titi Swamp                | Yes         | 5.24   |  |  |  |  |  |
| 625         | Hydric Pine Flatwoods     | Yes         | 28.94  |  |  |  |  |  |
| 626         | Hydric Pine Savanna       | Yes         | 137.56 |  |  |  |  |  |
| 631         | Wetland Shrub             | Yes         | 5.16   |  |  |  |  |  |
| 641         | Freshwater Marsh          | Yes         | 77.99  |  |  |  |  |  |
| 642         | Saltwater Marsh           | Yes         | 104.56 |  |  |  |  |  |
| 710         | Beach                     | No          | 4.31   |  |  |  |  |  |
| Tract B     |                           |             |        |  |  |  |  |  |
| 411         | Mesic Pine Flatwoods      | No          | 8.58   |  |  |  |  |  |
| 611         | Bay Swamp                 | Yes         | 36.09  |  |  |  |  |  |
| 614         | Titi Swamp                | Yes         | 56.54  |  |  |  |  |  |
| 625         | Hydric Pine Flatwoods     | Yes         | 96.19  |  |  |  |  |  |
| 626         | Hydric Pine Savanna       | Yes         | 52.86  |  |  |  |  |  |
| 627         | Hydric Pine Swamp Forest  | Yes         | 9.46   |  |  |  |  |  |
| 630         | Wetland Forested Mix      | Yes         | 79.13  |  |  |  |  |  |
|             | TOTAL WETLA               | AND ACREAGE | 770.39 |  |  |  |  |  |
|             | TOTAL UPLA                | AND ACREAGE | 50.04  |  |  |  |  |  |

Table 5. Summary of Historic/Proposed Vegetative Communities on the Dutex Property.

# Mesic Pine Flatwoods (FLUCCS 411), 35.84 Acres

This upland community is typified by an overstory dominated by either slash pine, longleaf pine or both. Common flatwoods understory species include wire grass (*Aristida stricta*) and a variety of other grasses and forbs, saw palmetto (*Serenoa repens*), wax myrtle (*Myrica cerifera*), gallberry (*Ilex glabra*), and a wide variety of herbs and brush. Originally longleaf pines were common on drier sites while slash pines, which are less fire-resistant, were confined to moister sites; wildfire was the contributing factor in this distribution. However, fire control and artificial reforestation have extended the range of slash pine into former longleaf sites

Initially this upland canopy will be dominated by slash pine but adequate numbers of recruiting longleaf pine seedlings may ultimately replace the slash in dominance provided fire returns at a 2-4 year interval. Mesic flatwoods will be restored to an open landscape with a species-rich groundcover dominated by wiregrass and other fire-dependent grasses and forbs, as well as with shrubs maintained as coppice. Longleaf pine may ultimately be the principal canopy tree within this community. Following mitigation activities, lands slated for conversion to pine flatwoods are anticipated to succeed back to historic vegetative conditions.

#### Hardwood-Conifer Mixed (FLUCCS 434), 9.89 Acres

No significant changes in vegetative assemblages or structure are anticipated to occur within this community.

<u>Streams and Waterways (FLUCCS 510), 3.03 Acres</u> No significant changes are anticipated to occur within this community.

# Ditch (FLUCCS 510D), 0.76 Acres

No significant changes are anticipated to occur within this community.



#### Lake (less than 10 acres; FLUCCS 524), 2.31 Acres No significant changes are anticipated to occur within this community.

# Bay Swamp (FLUCCS 611), 74.38 Acres

Bay swamp is an evergreen forested wetland of bay species situated at the base of a slope or in a depression. Loblolly bay (*Gordonia lasianthus*), sweetbay (*Magnolia virginiana*), and/or swamp bay (*Persea palustris*) form an open-to-dense tree canopy and are also dominant in the understory along with fetterbush (*Lyonia lucida*), large gallberry (*Ilex coriacea*), dahoon (*I. cassine*), myrtle dahoon (*I. cassine* var. *myrtifolia*), titi (*Cyrilla racemiflora*), black titi (*Cliftonia monophylla*), wax myrtle (*Myrica cerifera*), coastal doghobble (*Leucothoe axillaris*), swamp doghobble (*L. racemosa*), red maple (*Acer rubrum*), and/or Virginia willow (*Itea virginica*). Composition of the understory varies regionally; black titi is a dominant component of baygall in the Florida Panhandle, but is uncommon in other areas. Loblolly pine (*Pinus taeda*), slash pine (*P. elliottii*), and/or pond pine (*P. serotina*) are occasionally found in the canopy, as well as sweetgum (*Liquidambar styraciflua*), and in the Panhandle, Atlantic white cedar (*Chamaecyparis thyoides*). Wetter bay swamps may also contain swamp tupelo (*Nyssa sylvatica* var. *biflora*) and/or pond cypress (*Taxodium ascendens*).

The canopy and understory do not generally form distinct strata but may appear as a dense, tall thicket (Clewell 1986). Vines, especially laurel greenbrier (*Smilax laurifolia*), coral greenbrier (*S. walteri*), and muscadine (*Vitis rotundifolia*), may be abundant and contribute to the often impenetrable nature of the understory. Herbs are absent or few, and typically consist of ferns such as cinnamon fern (*Osmunda cinnamomea*), netted chain fern (*Woodwardia areolata*), and Virginia chain fern (*W. virginica*). Sphagnum mosses (*Sphagnum* spp.) are common. Following mitigation activities, lands slated for conversion to pine flatwoods are anticipated to succeed back to historic vegetative conditions.

# Gum Swamp (FLUCCS 613). 36.28 Acres

No significant changes in vegetative assemblages or structure are anticipated to occur within existing gum swamps. Following removal of the beaver dam, currently inundated lands are anticipated to revegetate naturally and succeed back to historic vegetative conditions.

# Titi Swamp (FLUCCS 614), 61.78 Acres

Approximately 84 acres of titi swamp will be restored to the historic condition or hydric pine flatwoods or hydric pine savannah. These areas will be restored to an open landscape with a species-rich groundcover dominated by wiregrass and other fire-dependent grasses and forbs, as well as with shrubs maintained as coppice sprouts. Slash pine will be targeted as the principal canopy tree within this community with limited long leaf pine cover. In other areas the titi swamp will remain. The titi swamp was a component of the historic condition along historic drains and will be preserved. A reduction in vines and woody vegetation along shrub-flatwoods interfaces is likely following fire.

# Hydric Pine Flatwoods (FLUCCS 625), 125.13 Acres

This community will become an open pine forest with a sparse or absent midstory and a dense groundcover of wire grass (*Aristida stricta*) and other hydrophytic grasses, herbs, and low shrubs. The pine canopy typically consists of slash and longleaf pine. The subcanopy, where present, consists of scattered sweetbay (*Magnolia virginiana*), swamp bay, loblolly bay (*Gordonia lasianthus*), pond cypress (*Taxodium ascendens*), dahoon (*Ilex cassine*), titi (*Cyrilla racemiflora*), and/or wax myrtle (*Myrica cerifera*). Shrubs include large gallberry (*Ilex coriacea*), fetterbush (*Lyonia lucida*), titi, black titi (*Cliftonia monophylla*), sweet pepperbush (*Clethra alnifolia*), red chokeberry (*Photinia pyrifolia*), and azaleas (*Rhododendron canescens, R. viscosum*), Saw palmetto (*Serenoa repens*), and gallberry (*I. glabra*). Herbs include wiregrass, blue maidencane (*Amphicarpum muhlenbergianum*), and/or hydrophytic species such as toothache grass (*Ctenium aromaticum*), coastalplain



yellow-eyed grass (*Xyris ambigua*), Carolina redroot (*Lachnanthes caroliana*), beaksedges (*Rhynchospora chapmanii*, *R. latifolia*, and *R. compressa*), and pitcherplants (*Sarracenia* spp.).

These areas are typically present on wet prairie/seepage slopes and contain an herbaceous community found on continuously wet, but not inundated, soils and subjected to frequent fires. Savanna communities are usually dominated by dense wiregrass which, in the wetter portions, may occur with, or be replaced by, species in the sedge family. This nearly treeless community would have a similar diverse groundcover, dominated by beak rushes, wiregrass, as well as other grasses and forbs, that carries fire. If trees are present, the canopy will consist of cypress, longleaf pine, and slash pine. Shrubs, a minor component of this landscape, are maintained as coppice shrubs and often include titi. The restored groundcover will contain a diverse assemblage of wetland herbs as well as unusual and endemic insectivorous species. Following mitigation activities, lands slated for conversion to hydric pine flatwoods are anticipated to succeed back to historic vegetative conditions.

#### Hydric Pine Savanna (FLUCCS 626), 190.42Acres

Historically, hydric pine savanna dominated the northern and eastern portions of Tract A. This community is an open forest of slash pine with a dense herbaceous understory found on continuously wet, but not inundated, soils and subjected to frequent fires. It is usually dominated by dense wiregrass which, in the wetter portions, may occur with or be replaced by species in the sedge family: plumed beaksedge (*Rhynchospora plumosa*); featherbristle beaksedge (*R. oligantha*); Baldwin's nutrush (*Scleria baldwinii*); or slenderfruit nutrush (*S. georgiana*). In the Panhandle and northern Florida pitcherplants (*Sarracenia* spp.) are concentrated in the wetter portions. Characteristic species throughout its range include longleaved threeawn (*Aristida palustris*), pineland rayless goldenrod (*Bigelowia nudata*), toothache grass (*Ctenium aromaticum*), flattened pipewort (*Eriocaulon compressum*), water cowbane (*Oxypolis filifolia*), and coastalplain yellow-eyed grass (*Xyris ambigua*).

# Slash Pine Swamp Forest (FLUCCS 627), 9.46 Acres

This community is typically a domed swamp or strand dominated by slash pine, pond cypress, swamp black gum, loblolly bay, sweet bay, and swamp bay. These systems are typically found in systems transitioning from a pine flatwoods to hardwood forest. Due to the dense canopy, shrub and understory vegetation is sparse and may be dominated by wax myrtle, fetterbush, black titi, big gall berry, netted chain fern, Virginia chain fern and sphagnum moss.

# Wetland Forested Mixed (FLUCCS 630), 79.13 Acres

This community is vegetated with hydrophytic trees and shrubs that can withstand an extended hydroperiod. While mixed species canopies are common, the dominant trees are pond cypress (*Taxodium ascendens*) and swamp tupelo (*Nyssa sylvatica* var. *biflora*). Other typical canopy and subcanopy trees include slash pine (*Pinus elliottii*), red maple (*Acer rubrum*), dahoon (*Ilex cassine*), swamp bay (*Persea palustris*), sweetbay (*Magnolia virginiana*), loblolly bay (*Gordonia lasianthus*), swamp laurel oak (*Quercus laurifolia*), sweetgum (*Liquidambar styraciflua*), water oak (*Quercus nigra*), green ash (*Fraxinus pennsylvanica*), American hornbeam (*Carpinus caroliniana*), and American elm (*Ulmus americana*).

Depending on hydrology and fire history, shrubs may be found throughout a basin swamp or they may be concentrated around the perimeter. Common species include Virginia willow (*Itea virginica*), swamp dogwood (*Cornus foemina*), swamp doghobble (*Leucothoe racemosa*), coastal sweetpepperbush (*Clethra alnifolia*), myrtle dahoon (*Ilex cassine var. myrtifolia*), fetterbush (*Lyonia lucida*), wax myrtle (*Myrica cerifera*), titi (*Cyrilla racemiflora*), black titi (*Cliftonia monophylla*), and common buttonbush (*Cephalanthus occidentalis*). The herbaceous layer is also variable and includes a wide array of species including maidencane (*Panicum hemitomon*), Virginia chain fern (*Woodwardia virginica*), arrowheads (*Sagittaria spp.*), lizard's tail (*Saururus*)



*cernuus*), false nettle (*Boehmeria cylindrica*), beaksedges (*Rhynchospora* spp.), bladderworts (*Utricularia* spp.), and royal fern (Osmunda regalis var. spectabilis). Following mitigation activities, lands slated for conversion to wetland forested mixed are anticipated to succeed back to historic vegetative conditions.

### Wetland Shrub (FLUCCS 631), 5.16 Acres

No significant changes in vegetative assemblages or structure are anticipated to occur within this community. A reduction in vines and woody vegetation along shrub-flatwoods interfaces is likely following fire.

#### Freshwater Marsh (FLUCCS 641), 77.99 Acres and Saltwater Marsh (FLUCCS 642), 104.56

No significant changes in vegetative assemblages or structure are anticipated to occur within this community. A reduction in woody vegetation within the marsh and along the landward limits is likely following fire.

#### Beaches (FLUCCS 710), 4.31 Acres

No significant changes in vegetative assemblages or structure are anticipated to occur within this community.

#### 9.0 **RESTORATION PLAN**

The following restoration recommendations are proposed to aid in the development of the management plans and land management activities implemented by NWFWMD. To the greatest extent possible, this plan will attempt to re-establish pre-silvicultural vegetative assemblages and distribution patterns on the Dutex property.

The mitigation restoration scenario was developed to provide a framework to facilitate a mitigation cost/ecological lift analysis. ENTRIX completed a Unified Mitigation Assessment Methodology (UMAM) analysis. The mitigation plan was developed in coordination with NWFMWD utilizing site-specific field surveys and target field conditions. The mitigation plan and associated UMAM analysis are described further in this section. This report does not provide specific mitigation cost analysis.

The conversion of specific types of current communities to their target community types, and potential acreages, is described in **Table 6**. Proposed activities include installation of culverts, low water crossings, pine thinning, supplemental planting, prescribed fire, as well as mechanical and chemical treatments to control woody vegetation. Specific details are described in Sections 9.1 and 9.2.

| Proposed       | Proposed Community         |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |
|----------------|----------------------------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| FLUCCS<br>Code | Description                | 411 | 434 | 510 | 510D | 524 | 611 | 613 | 614 | 625 | 626 | 627 | 630 | 631 | 641 | 642 | 710 |
| Tract A        |                            |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |
| 411            | Mesic Pine<br>Flatwoods    | Х   |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |
| 434            | Hardwood<br>Conifer Mixed  |     | Х   |     |      |     |     |     |     |     |     |     |     |     |     |     |     |
| 510            | Stream and<br>Waterways    |     |     | Х   |      |     |     |     |     |     |     |     |     |     |     |     |     |
| 510D           | Road/Ditch                 | Х   |     |     | Х    |     |     |     |     |     |     |     |     |     |     |     |     |
| 524            | Lakes <10 Ac.              |     |     |     |      | Х   |     |     |     |     |     |     |     |     |     |     |     |
| 534            | Beaver Pond                | Х   |     |     |      |     |     | Х   |     |     | Х   |     |     |     |     |     |     |
| 611            | Bay Swamp                  |     |     |     |      |     | Х   |     |     |     |     |     |     |     |     |     |     |
| 613            | Gum Swamp                  |     |     |     |      |     | Х   | Х   |     |     |     |     |     |     |     |     |     |
| 614            | Titi Swamp                 |     |     |     |      |     |     |     | Х   |     | Х   |     |     |     |     |     |     |
| 625            | Hydric Pine<br>Flatwoods   |     |     |     |      |     |     |     |     | Х   | Х   |     |     |     |     |     |     |
| 627            | Slash Pine<br>Swamp Forest |     |     |     |      |     | Х   |     |     |     | Х   |     |     |     |     |     |     |
| 631            | Wetland<br>Shrub           |     |     |     |      |     | Х   |     |     |     |     |     |     | Х   |     |     |     |

Table 6. Matrix of Current to Target Vegetative Communities and Land Uses with Acreages on the Dutex Property.



| Proposed       | Community                  |     | Proposed Community |     |      |     |     |     |     |     |     |     |     |     |     |     |     |
|----------------|----------------------------|-----|--------------------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| FLUCCS<br>Code | Description                | 411 | 434                | 510 | 510D | 524 | 611 | 613 | 614 | 625 | 626 | 627 | 630 | 631 | 641 | 642 | 710 |
| 641            | Freshwater<br>Marsh        |     |                    |     |      |     |     |     |     |     |     |     |     |     | Х   |     |     |
| 642            | Saltwater<br>Marsh         |     |                    |     |      |     |     |     |     |     |     |     |     |     |     | Х   |     |
| 710            | Beaches                    |     |                    |     |      |     |     |     |     |     |     |     |     |     |     |     | Х   |
| 747            | Beaver Dam                 | Х   |                    |     |      |     |     | Х   |     |     | Х   |     |     |     |     |     |     |
| Tract B        |                            |     |                    |     |      |     |     |     |     |     |     |     |     |     |     |     |     |
| 411            | Mesic Pine<br>Flatwoods    | Х   |                    |     |      |     |     |     |     |     |     |     |     |     |     |     |     |
| 611            | Bay Swamp                  |     |                    |     |      |     | Х   |     |     |     |     |     |     |     |     |     |     |
| 614            | Titi Swamp                 |     |                    |     |      |     |     |     | Х   |     |     |     |     |     |     |     |     |
| 627            | Slash Pine<br>Swamp Forest |     |                    |     |      |     |     |     |     | Х   | Х   | Х   | Х   |     |     |     |     |
| 630            | Wetland<br>Forested Mixed  |     |                    |     |      |     |     |     |     |     |     |     | Х   |     |     |     |     |

# 9.1 MITIGATION EFFORT

**Figures 7A** and **7B** depict the proposed mitigation plan for Tract A and B respectively. The proposed planting schedule is provided in **Section 9.3**. **Table 7** provides a summary of the proposed mitigation activities for Tracts A and B.

| Current   | Target    | IIMAM   |          |          |           | Restorati | on Tech | nique                      |                  |                   |
|-----------|-----------|---------|----------|----------|-----------|-----------|---------|----------------------------|------------------|-------------------|
| Community | Community | Polygon | Thinning | Gyrotrac | Herbicide | Planting  | Fire    | Preserve/Fire<br>Intrusion | Removal/<br>Fill | Exotic<br>Removal |
| Tract A   |           |         |          |          |           |           |         |                            |                  |                   |
| 411       | 411       | 2-2     |          |          |           |           | Х       |                            |                  |                   |
| 411       | 411       | 3-3     | Х        |          | Х         |           | Х       |                            |                  |                   |
| 434       | 434       | 1-6     |          |          |           |           |         | Х                          |                  |                   |
| 510       | 510       | 4-6     |          |          |           |           |         | Х                          |                  |                   |
| 510D      | 411       | 5-5     |          |          |           |           |         |                            | Х                |                   |
| 510D      | 510D      | 6-6     |          |          |           |           |         | Х                          |                  |                   |
| 524       | 524       | 8-6     |          |          |           |           |         | Х                          |                  |                   |
| 534       | 411       | 9-6     |          |          |           |           |         | Х                          |                  |                   |
| 534       | 613       | 10-6    |          |          |           |           |         | Х                          |                  |                   |
| 534       | 626       | 11-6    |          |          |           |           |         | Х                          |                  |                   |
| 611       | 611       | 12-4    |          | Х        | Х         |           | Х       |                            |                  |                   |
| 613       | 611       | 13-4    |          | Х        | Х         |           | Х       |                            |                  |                   |
| 613       | 613       | 14-6    |          |          |           |           |         | Х                          |                  |                   |
| 614       | 614       | 15-6    |          |          |           |           |         | Х                          |                  |                   |
| 614       | 626       | 3-3     | Х        |          | Х         |           | Х       |                            |                  |                   |
| 625       | 625       | 16-2    |          |          |           |           | Х       |                            |                  |                   |
| 625       | 625       | 18-4    |          | Х        | Х         |           | Х       |                            |                  |                   |
| 625       | 625       | 17-3    | Х        |          | Х         |           | Х       |                            |                  |                   |
| 625       | 626       | 19-2    |          |          |           |           | Х       |                            |                  |                   |
| 625       | 626       | 20-3    | Х        |          | Х         |           | Х       |                            |                  |                   |
| 625       | 626       | 21-4    |          | Х        | Х         |           | Х       |                            |                  |                   |
| 627       | 626       | 23-3    | Х        |          | Х         |           | Х       |                            |                  |                   |
| 627       | 611       | 22-4    |          | Х        | Х         |           | Х       |                            |                  |                   |
| 627       | 626       | 20-3    | Х        |          | Х         |           | Х       |                            |                  |                   |
| 631       | 611       | 24-6    |          |          |           |           |         | Х                          |                  |                   |
| 631       | 631       | 25-6    |          |          |           |           |         | Х                          |                  |                   |
| 641       | 641       | 27-6    |          |          |           |           |         | Х                          |                  |                   |
| 710       | 710       | 28-2    |          |          |           |           | Х       |                            |                  |                   |
| 747       | 411       | 29-1    |          |          |           | Х         |         |                            | X                |                   |
| 747       | 613       | 30-1    |          |          |           | Х         |         |                            | X                |                   |
| 747       | 626       | 31-1    |          |          |           | Х         |         |                            | X                |                   |
| Tract B   |           |         |          |          |           |           |         |                            |                  |                   |
| 411       | 411       | 3B      | Х        |          | Х         | Х         | Х       |                            |                  |                   |

 Table 7. Proposed Restoration Technique per Community Conversion Type within the Dutex Property.



| C t       | Transat   | TINANA  | Restoration Technique |          |           |          |      |                            |                  |                   |
|-----------|-----------|---------|-----------------------|----------|-----------|----------|------|----------------------------|------------------|-------------------|
| Community | Community | Polygon | Thinning              | Gyrotrac | Herbicide | Planting | Fire | Preserve/Fire<br>Intrusion | Removal/<br>Fill | Exotic<br>Removal |
| 411       | 411       | 4C      |                       | Х        | Х         | Х        | Х    |                            |                  |                   |
| 411       | 411       | 4ERC    |                       | Х        | Х         | Х        | Х    |                            |                  | Х                 |
| 611       | 611       | 4ERB    |                       | Х        | Х         | Х        | Х    |                            |                  | Х                 |
| 611       | 611       | 4B      |                       | Х        | Х         |          | Х    |                            |                  |                   |
| 611       | 611       | 6       |                       |          |           |          |      | Х                          |                  |                   |
| 611       | 611       | 6ER     |                       |          |           |          |      | Х                          |                  | Х                 |
| 614       | 614       | 4B      |                       | Х        | Х         |          | Х    |                            |                  |                   |
| 614       | 614       | 6       |                       |          |           |          |      | Х                          |                  |                   |
| 627       | 625       | 3A      | Х                     |          | Х         | Х        | Х    |                            |                  |                   |
| 627       | 626       | 3A      | Х                     |          | Х         | Х        | Х    |                            |                  |                   |
| 627       | 625       | 4ERA    |                       | Х        | Х         | Х        | Х    |                            |                  | Х                 |
| 627       | 626       | 4ERA    |                       | Х        | Х         | Х        | Х    |                            |                  | Х                 |
| 627       | 625       | 4A      |                       | Х        | Х         | Х        | Х    |                            |                  |                   |
| 627       | 626       | 4A      |                       | Х        | Х         | Х        | Х    |                            |                  |                   |
| 627       | 630       | 4B      |                       | Х        | Х         |          | Х    |                            |                  |                   |
| 627       | 627       | 6       |                       |          |           |          |      | Х                          |                  |                   |
| 627       | 627       | 6ER     |                       |          |           |          |      | Х                          |                  | Х                 |
| 630       | 630       | 6       |                       |          |           |          |      | X                          |                  |                   |
| 630       | 630       | 6ER     |                       |          |           |          |      | X                          |                  | Х                 |
|           |           |         |                       |          |           |          |      |                            |                  |                   |

# 9.2 **RESTORATION TECHNIQUES**

Low impact machinery should be utilized where possible. Vehicles should be equipped with tracks to avoid rutting in both uplands and wetlands. Tracked vehicles are in contact with a larger surface area than would generally be the case with a wheeled vehicle, and as a result exert a much lower force per unit area on the ground being traversed than a conventional wheeled vehicle of the same weight. This makes them suitable for use on soft, low friction, and uneven ground. Existing access roads, where available, should be utilized to enter and exit mitigation. Further, restoration activities should not occur following periods of extended rainfall.

# Prescribed Fire, Fire Intrusion

Frequent fire is necessary to re-establish and maintain the historic limits and plant assemblages of grasslands and herbaceous pinelands. A great deal of the existing dense woody vegetation is likely attributable to fire suppression, especially within the mesic and hydric flatwoods and savanna lands. The longer the period of time since the last fire, the more developed the understory shrubs will be. If the understory is allowed to grow for too long, the accumulation of needle drape and the height of flammable understory shrubs will increase the probability of a catastrophic canopy fire. Due to the long absence of fire throughout many of communities within the Dutex Property, cool season or dormant season burns may be required to reduce the fuel load prior to warm season burns.

Falling dense titi stands should also be implemented to reduce the vertical fuel load to reduce the likelihood of a canopy fire. Fires should be allowed to burn into deeper wetland systems. Existing firebreaks should be used where present. No firelines will be used to prevent fire from intruding into forested or shrub dominated wetlands unless experiencing drought conditions or there is concern with smoke management. When a fireline is necessary, heavy equipment can be used only to mow or "lay down" vegetation by driving equipment over the area of concern with attention to avoiding wet, mucky areas. If the previous two methods are unsatisfactory, and the situation is considered a serious threat, careful planning and consideration for a lightly harrowed line as determined by agency staff is acceptable.

Growing season burning will be used whenever possible to mimic natural fires. Firelines will avoid ecotones and prescribed fires will be encouraged to burn into wetland ecotones when sufficient hydration exists. The protocol for fire in wetlands is to allow fires to reduce woody plants on the wetland edges and within the ecotone.



This map and all data contained within are supplied as is with no warranty. Entrix, Inc. expressly disclaims responsibility for damages or liability form any claims that may arise out of the use or misuse of this map. It is the sole responsibility of the user to determine if the data on this map mets the user's needs. This map was not created as survey data, nor should it be used as such. It is the user's responsibility to obtain proper survey data, prepared by a licensed surveyor, where required by Jaw.

# Figure 7A - Mitigation Activity Tract A

Dutex Escambia County, Florida



Date: 03/23/2010 Rev. Date: 06/09/2010 PM: JLH GIS Analyst: JPB Map Document: FIGURE7A\_MIT\_LOW\_A.mxd Project Number: 4240-026 PDF Document: FIGURE7A\_MIT\_LOW\_A.pdf Plot Size: 8.5 x 11



This map and all data contained within are supplied as is with no warrarhy. Entrix, Inc. expressly disclaims responsibilly for damages or liability from any claims that may arise out of the use or misuse of this map. It is the sole responsibility of the user's determine if the data on this map meets the user's needs. This map was not created as survey data, nor should it be used as such. It is the user's responsibility to obtain proper survey data, prepared by a licensed surveyor, where required by Jaw.

# Figure 7B - Mitigation Activity Tract B

Dutex Escambia County, Florida



Date: 03/23/2010 Rev. Date: 06/10/2010 PM: JLH GIS Analyst: JPB Map Document: FIGURE78\_MIT\_B.mxd Project Number: 4240-026 PDF Document: FIGURE78\_MIT\_B.pdf Plot Size: 8.5 x 11



The reduction of shrub density through repeated prescribed burns will allow relict graminoid and herbaceous groundcover species, currently present at reduced numbers, the opportunity to colonize areas previously occupied by woody vegetation. The woody species will persist, but will remain as part of the ground cover stratum as the herbaceous component recovers. Plants currently identified as absent within unburned lands should emerge, as many herbaceous species are known to become dormant with increasing competition from shrubs, surviving as rootstocks until released by fire and increased exposure to light and air. A summary of the target fire return interval for each target community is provided as **Table 9**.

| FLUCCS Code | FLUCCS Community          | Fire Return Interval |
|-------------|---------------------------|----------------------|
| Tract A     |                           |                      |
| 411         | Mesic Pine Flatwoods      | 2-4 yrs.             |
| 434         | Hardwood-Conifer Mix      | variable, 2-20 yrs   |
| 510         | Stream and Waterways      | NA                   |
| 524         | Lake (less than 10 acres) | NA                   |
| 611         | Bay Swamp                 | occasional, rare     |
| 613         | Gum Swamp                 | occasional, rare     |
| 614         | Titi Swamp                | variable, periodic   |
| 625         | Hydric Pine Flatwoods     | 2-4 yrs.             |
| 626         | Hydric Pine Savanna       | 2-4 yrs.             |
| 631         | Wetland Shrub             | 2-3 yrs              |
| 641         | Freshwater Marsh          | 5-10 yrs.            |
| 642         | Saltwater Marsh           | 5-10 yrs.            |
| 710         | Beach                     | 3-10 yrs.            |
| Tract B     |                           |                      |
| 411         | Mesic Pine Flatwoods      | 2-4 yrs.             |
| 611         | Bay Swamp                 | occasional, rare     |
| 614         | Titi Swamp                | variable, periodic   |
| 625         | Hydric Pine Flatwoods     | 2-4 yrs              |
| 626         | Hydric Pine Savanna       | 2-4 yrs              |
| 630         | Wetland Forested Mix      | occasional, rare     |

Table 9. Summary of Fire Return Interval within the Dutex Property.

#### Silvicultural Activities (Gyrotrac, Thinning, Drop/Fall)

Where possible, pine within flatwoods should be thinned and converted to uneven-aged management. Preferably, thinning will result in a random spatial pattern of trees. In all cases enough canopy trees should be left to provide sufficient needle cast to carry fires. When groundcover fuels have recovered enough to carry fire on their own, canopy trees should be further harvested, felled, or girdled to restore historic densities. If harvested, specialized equipment, including chainsaws, may be required to prevent rutting in some areas.

A Gyro-Track, set off-grade, should be used in areas containing dense, mature brush and small trees. Gyro-Tracking should be conducted in manner that does not disturb the soil. A summary of the longterm target tree density per proposed vegetative community is provided in **Table 10**. Actual tree densities during implementation phase of mitigation activities are likely to be higher than the longterm target densities.

| FLUCCS Code | FLUCCS Community          | Target Trees/Acre | Forest Age Structure |
|-------------|---------------------------|-------------------|----------------------|
| 411         | Pine Flatwoods            | 25-40             | Uneven               |
| 434         | Hardwood-Conifer Mix      | 150-250           | Uneven               |
| 510         | Stream and Waterways      | NA                | NA                   |
| 524         | Lake (less than 10 acres) | NA                | NA                   |
| 611         | Bay Swamp                 | 200-400           | Uneven               |
| 613         | Gum Swamp                 | 200-400           | Uneven               |

 Table 10.
 Summary of Target Trees per Acre.



| FLUCCS Code | FLUCCS Community      | Target Trees/Acre | Forest Age Structure |
|-------------|-----------------------|-------------------|----------------------|
| 614         | Titi Swamp            | NA                | NA                   |
| 625         | Hydric Pine Flatwoods | 15-30             | Uneven               |
| 626         | Hydric Pine Savanna   | 0-15              | Uneven               |
| 630         | Wetland Forested Mix  | 200-400           | Uneven               |
| 631         | Wetland Shrub         | NA                | NA                   |
| 641         | Freshwater Marsh      | NA                | NA                   |
| 642         | Saltwater Marsh       | NA                | NA                   |
| 710         | Beach                 | NA                | NA                   |

The initial thin for each system, would be 100-200 trees per acre, for mesic pine flatwoods, hydric pine flatwoods, and pine encroachment areas until the understory has developed. This initial target density should provide sufficient needle cast to sufficiently carry fire across the landscape as the understory is developing. After the understory can carry a fire, tree densities can be further reduced toward the target levels.

### Road/Beaver Dam Removal/Low Water Crossings

The beaver dam and all wetland roads should be removed were feasible. Fill generated should be placed in adjacent ditches and graded back into the drained pond. Beavers should be trapped and removed from the property. Roads and beaver dam should be graded to the same elevation as the adjacent vegetative community. Ditch filling should re-establish hydroperiods within drained and immediately adjacent lands. Ditch plugs should be installed where fill generated from road removals is insufficient to fully fill ditches. Where roads are not slated for removal, five low-water crossings have been sited where wetland drains or water conveyances were historically present. Consideration should be given to the utilization of granite in lieu of lime rock as a low-water crossing base so as not to affect natural water and soil chemistry. Further hydrologic evaluation of the study site and adjacent lands is needed to fully understand how existing culverts, and the respective siting of, affect re-establishment of historic flow paths.

Following beaver dam removal and subsequent draining of inundated lands, historically forested wetlands will be allowed to revegetate naturally. Supplemental plantings are not proposed as native soil and adjacent lands should provide an ample seed source and root stock for proper re-establishment of the native vegetative community. Annual monitoring will be required to ensure new dams are not constructed. Dam removal is also anticipated to decrease the flooding frequency on immediately adjacent developed lands to the north.

# Herbicide Treatment

Chemical treatment will be utilized to remove and retard growth both of native, woody vegetation, and nuisance/exotic species. Herbicide applications will be applied by a Florida-licensed Restricted Use Pesticide (RUP) applicator that is familiar with the indigenous plant populations.

Herbicides are often the most effective and efficient means of controlling woody plants or plants with running rhizomes. There are several application techniques that can be used to control trees and other woody plants, and not all woody plant species are equally susceptible to herbicides. Therefore, relative to size and species, results may vary for any of these application methods.

Hand-applied foliar spray will be utilized where risk to non-target species is minimal. Treatments using this method will be conducted such that over-application, spray run-off, and spray drift are minimized. Additionally, a tracer dye will be used with the spray solution to avoid over-application or omitting some plants entirely. This treatment technique is most effective during the growing season. All treatments will be conducted during appropriate vegetative growing stage, weather conditions, and season to increase effectiveness.



# Supplemental Planting

Supplemental planting within Tract A is slated to occur only within areas of beaver dam removal. Supplemental plantings within Tract B will occur throughout most areas currently containing dense pine stands (e.g. 411 and 627). Throughout both Tracts A and B supplemental wiregrass plantings and seventeen additional regional herbaceous groundcover flatwoods species will occur if herbaceous groundcover within mesic flatwoods, hydric flatwoods, or hydric savannas is deemed insufficient following the initial clearing/thinning effort. Supplemental plantings will consist of bareroot trees and wiregrass plugs installed at varying densities dependent upon existing/regenerating plant densities. Planting densities within bay swamps will depend on vegetative structure/density following mitigation activities. The proposed and potential mitigation effort planting schedule is provided in **Table 11**.

|                              | Common        | Spacing (ft | FLUCO   | CS Code  | Mitigation       | Sizo   |          |
|------------------------------|---------------|-------------|---------|----------|------------------|--------|----------|
| Scientific Name              | Name          | on-center)  | Current | Target   | Activity<br>Code | (Acre) | Quantity |
| Tract A                      |               |             |         |          |                  |        |          |
| Pinus palustris              | longleaf pine | 10          | 747     | 411      | 2                | 0.05   | 22       |
| Aristida stricta             | wire grass    | 3           | /4/     | 411      | 2                | 0.05   | 242      |
| Nyssa sylvatica var. biflora | swamp tupelo  | 6           | 747     | 612      | 1                | 0.10   | 115      |
| Taxodium ascendens           | pond cypress  | 6           | /4/     | 015      | 1                | 0.19   | 115      |
| Pinus elliottii              | slash pine    | 10          |         |          |                  |        | 22       |
| Aristida stricta             | wire grass    | 4           | 747     | 626      | 2                | 0.05   | 136      |
| NA                           | 17 herb. spp. | 4           |         |          |                  |        | 136      |
| Tract B                      |               |             |         |          |                  |        |          |
| Aristida stricta             | wire grass    | 4           | 627     | 625 626  | 20               | 120.85 | 351,267  |
| NA                           | 17 herb. spp. | 4           | 027     | 025, 020 | Ja               | 129.63 | 351,267  |
| Pinus elliottii              | slash pine    | 10          | 411     | 411      | 35               | 2 55   | 12 337   |
| Aristida stricta             | wire grass    | 3           | 411     | 411      | 30               | 2.33   | 12,337   |
| Aristida stricta             | wire grass    | 4           | 627     | 625 626  | 4ED a            | 3 20   | 8,964    |
| NA                           | 17 herb. spp. | 4           | 027     | 025, 020 | 4EKa             | 3.29   | 8,964    |
| Pinus palustris              | longleaf pine | 10          | 441     | 411      |                  | 2.16   | 939      |
| Aristida stricta             | wire grass    | 3           | 441     | 411      | 4EKC             | 2.16   | 10,430   |
| Aristida stricta             | wire grass    | 4           | 627     | 625, 626 | 4a               | 15.90  | 43,253   |
| Pinus palustris              | longleaf pine | 10          | 441     | 411      | 4c               | 3.881  | 1,691    |

Table 11. Mitigation Effort Planting Summary for Dutex Property.

The successful restoration of historic vegetative distribution patterns should be measured against the best available pre-silvicultural aerial photography. While near-total hydrologic restoration within the study areas is potentially possible, complete re-establishment of historic hydropatterns and historic vegetative limits may not be realized due to permanent hydrologic alterations within the study sites and on adjacent lands. Hydrological restoration of off-site lands is outside the scope of this report. Though comparison of restored target vegetative communities with those historically present is not possible due to the lack of pre-silvicultural vegetative data within the study areas, similar relatively unaltered plant assemblages present locally and should be used as reference sites. References site for this project have not yet been identified.

# 10.0 UMAM ANALYSIS

UMAM analysis was conducted for the mitigation plan. The results of UMAM analysis identify a potential overall functional lift of 107.16 credits following implementation of the proposed mitigation activities. A UMAM assessment area polygon map is provided as **Figure 8A** for Tract A and **Figure 8B** for Tract B. UMAM polygons were delineated based on both current and historic/target vegetative community structure and function as well as the proposed mitigation schedule. A summary of the mitigation effort UMAM scoring is provided in **Appendix D** for Tract A and **Appendix E** for Tract B.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 16            |                                                                   | 92<br>3141          | 11-6<br>3-3<br>3-4<br>3-9-9<br>10-9<br>10-9<br>3-3<br>3-4<br>3-3<br>3-4<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5<br>3-5 |        | 214<br>15-6<br>18-4<br>18-4<br>18-4<br>18-3<br>3-4<br>21-4<br>3-3                    |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------|-------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRACT A BOUNDARY - 481.58 AC. +/-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | $\square$     | 9-6 - 534(C) / 411(T) - (PRESERVATION, FIRE INTRUSION) - 1.21AC.  | 3                   | 18-4 - 625(C) / 625(T) - (GYROTRAC, FIRE, HERBICIDE) - 21.06AC.                                                                 | 3      | 26-2 - 641(C) / 641(T) - (FIRE) - 180.67AC.                                          |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1-6 - 434(C) / 434(T) - (PRESER VATION,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FIRE INTRUSION) - 9.89AC.    |               | 10-6 - 534(C) / 613(T) - (PRESERVATION, FIRE INTRUSION) - 11.28AC | ි<br>දුර            | 19-2 - 625(C) / 626(T) - (FIRE) - 38.53AC.                                                                                      |        | 26-2 - 642(C) / 642(T) - (FIRE) - 180.67AC.                                          |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2-2 - 411(C) / 411(T) - (FIRE) - 6.82AC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |               | 11-6 - 534(C) / 626(T) - (PRESERVATION, FIRE INTRUSION) - 6.85AC. |                     | 20-3 - 625(C) / 626(T) - (THIN, FIRE, HERBICIDE) - 77.59AC.                                                                     |        | 27-6 - 641(C) / 641(T) - (PRESERVATION, F                                            | IRE INTRUSION) - 1.88AC.                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3-3 - 411(C) / 411(T) - (THIN, FIRE, HERE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SIGIDE) - 22.89AC.           | $\sim$        | 12-4 - 611(U) / 611(T) - (GYROTRAC, FIRE, HERBICIDE) - 4.78AC.    |                     | 20-3 - 527(C) / 525(T) - (THIN, FIRE, HERBICIDE) - 77.59AC.                                                                     |        | 28-2 - /10(C) / 710(T) - (FIRE) - 4.31AC.                                            |                                                                                         | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4-6 - 510(C) / 510(T) - (PRESERVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FIRE INTRUSION) - 3.034C     | $\frac{2}{2}$ | 14-6 - 613(C) / 613(T) - (PRESERVATION FIRE INTRUSION) - 24 840   | $\sim$              | 21-4 - 022(U) / 020(1) - (UTRUTRAC, FIRE, MERBICIDE) - 5.78AC.                                                                  | $\sim$ | 23-1 - 747(C) / 411(1) - (BEAVER DAM REN<br>30-1 - 747(C) / 613(T) - (REAVER DAM DEN | 10 VAL, PLANTING) - 0.05AC.                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5-5 - 510D(C)/ 411(T) - (ROAD REMOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L / DITCH FILL) - 0.13AC.    | 3             | 15-6 - 614(C) / 614(T) - (PRESERVATION, FIRE INTRUSION) - 5.24AC. | $\sim$              | 23-3 - 627(C) / 626(T) - (THIN, FIRE. HERBICIDE) - 4.93AC                                                                       | $\sim$ | 31-1 - 747(C) / 626(T) - (BEAVER DAM REM                                             | IOVAL, PLANTING) - 0.05AC.                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6-6 - 510D(C) / 510D(T) - (PRESERVATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N, FIRE INTRUSION) - 0.76AC. | $\tilde{\Xi}$ | 16-2 - 625(C) / 625(T) - (FIRE) - 5.41AC.                         | $\widetilde{\sim}$  | 24-6 - 631(C) / 611(T) - (PRESERVATION, FIRE INTRUSION) - 12.51AC                                                               | $\sim$ |                                                                                      | ,                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8-6 - 524(C) / 524(T) - (PRESERVATION,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FIRE INTRUSION) - 2.31AC.    | ä             | 17-3 - 625(C) / 625(T) - (THIN, FIRE, HERBICIDE) - 2.47 AC.       | ŝ                   | 25-6 - 631(C) / 631(T) - (PRESERVATION, FIRE INTRUSION) - 5.16AC.                                                               |        |                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 0             | 1,000 2,000                                                       | 3,000               | 4,000 Feet                                                                                                                      |        |                                                                                      | 88.041.1498611990.086629780                                                             | 1.588552.415.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | 0             | 300 600                                                           | 900                 | 1,200 Meters                                                                                                                    |        |                                                                                      |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| This map and all data contained within are<br>supplied as is with no warranty. Entrix, inc.<br>expressly disclaims responsibility for damages<br>or liability from any claims that may arise out<br>of the use or misuse of this map. It is the sole<br>responsibility of the user to determine if the<br>data on this map mets the user's needs. This<br>map was not created as survey data, nor<br>should it be used as such. It is the user's<br>responsibility to obtain proper survey data,<br>prepared by a licensed surveyor, where<br>required by law. |                              | Fiç           | gure 8A - UMAM Asse<br>Dute<br>Escambia Cou                       | SSN<br>ex<br>nty, I | n <b>ent Area Tract A</b><br>Florida                                                                                            |        | Image: 2007 NC<br>Sec:041<br>Twp 01 S<br>Rrp 31 W<br>Sec:03<br>Twp 02 S<br>Rrg 31 W  | 2420 W. Lakeshore Drive, Sull<br>Tallahassee, FL 32312<br>WWW.e<br>Coordinate System: N | pites         pites <th< td=""></th<> |

Date: 03/23/2010 Rev. Date: 06/10/2010 PM: JLH GIS Analyst: JPB Map Document: FIGURE8A\_UMAM.mxd Project Number: 4240-026 PDF Document: FIGURE8A\_UMAM.pdf Plot Size: 8.5 x 11

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | G GER GER GER GER GER GER GER GER GER GE                                            | RB<br>-AERA<br>GER<br>G                                       |                                                    |                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|
| TRACT B BOUNDARY - 338.85 AC. +/-                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | 4ERC - 411(C) / 411(T) - (GYRO-TRACK, HERBICIDE, FIRE, EXOTICS REMOVAL, PLANTING)   | - 2.16AC. 6 - 611(C) / 611(T) - (PRE                          | ESERVATION) - 126.77 AC.                           |                                                                             |
| 3A - 627(C) / 625(T) - (TIMBER, FIRE, H                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ERBICIDE, PLANTING) - 129.86AC.                       | 4A - 627(C) / 625(T) - (GYRO-TRACK, HERBICIDE, FIRE, PLANTING) - 15.9AC.            | 6 - 614(C) / 614(T) - (PRE                                    | ESERVATION) - 126.77AC.                            |                                                                             |
| 3A - 627(C) / 626(T) - (TIMBER, FIRE, H                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ERBICIDE, PLANTING) - 129.86AC.                       |                                                                                     | 6 - 627(C) / 627(T) - (PRE                                    | ESERVATION) - 126.77AC                             |                                                                             |
| 4ERA - 627(C) / 625(T) - (GYRO-TRACK                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , HERBICIDE, FIRE, EXOTICS REMOVAL, PLANTING) - 3.294 | <ul> <li>4B - 614(C) / 614(T) - (GYRO-TRACK, HERBICIDE, FIRE) - 44.37AC.</li> </ul> | 6ER - 611(C) / 611(T) - (F                                    | PRESERVATION, EXOTICS REMOVAL)                     | - 9.42AC.                                                                   |
| 4ERA - 627(C) / 626(T) - (GYRO-TRACK                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , HERBICIDE, FIRE, EXOTICS REMOVAL, PLANTING) - 3.294 | 4B - 627(C) / 630(T) - (GYRO-TRACK, HERBICIDE, FIRE) - 44.37AC.                     | 6ER - 627(C) / 627(T) - (F                                    | PRESERVATION, EXOTICS REMOVAL)                     | - 9.42AC.                                                                   |
| 4ERB - 611(C) / 611(T) - (GYRO-TRACK                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , HERBICIDE, FIRE, EXOTICS REMOVAL) - 0.65AC.         | 4C - 411(C)/411(T) - (GYRO-TRACK, HERBICIDE, FIRE, PLANTING) - 3.88AC.              | 6ER - 630(C) / 630(T) - (F                                    | PRESERVATION, EXOTICS REMOVAL)                     | - 9.42AC.                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · ·                                             | 000 2,000 3,000 4,000 Feet                                                          | n Round and Fold Marco do Hole Connot Coloring Coloring Color |                                                    |                                                                             |
| This map and all data contained within are<br>supplied as is with no warranty. Entrix, Inc.<br>expressly disclaims responsibility for damages<br>or lability from any claims that may arise out<br>of the use or misuse of this map. It is the sole<br>responsibility of the user to determine if the<br>data on this map meets the user's needs. This<br>map was not created as survey data, nor<br>should it be used as survey data, propared by a<br>incepared by a licensed survey data. | Figure 8                                              | B - UMAM Assessment Area Trac<br>Dutex<br>Escambia County, Florida                  | ct B                                                          | Image: 2007 NC<br>Sec 041<br>Twp 01 S<br>Ring 31 W | A20 W. Lakeshore Drive, Suite 100<br>Ralahassee, FL 32312<br>WWW.entrix.com |



Date: 03/23/2010 Rev. Date: 06/10/2010 PM: JLH GIS Analyst: JPB Map Document: FIGURE88\_UMAM.mxd Project Number: 4240-026 PDF Document: FIGURE88\_UMAM.pdf Plot Size: 8.5 x 11



#### **10.1** IMPLEMENTATION ISSUES

- Use of prescribed fire would need to be coordinated with Saufley Field and adjacent landowners.
- Initial dormant-season fuel reduction fires should be followed by implementation of growingseason burns, subject to on-the-ground conditions, on 2-to-5-year cycles.

### **10.2 PERFORMANCE CRITERIA**

The plant community structure targeted in the post-enhancement condition will be that which existed prior to the fire exclusion, subsequent increase in woody vegetation and beaver dam construction, as listed in **Table 5** and illustrated on **Figures 6A** and **6B**.

#### **10.3 LONG-TERM MANAGEMENT**

NWFWMD will be responsible for ensuring the perpetual management of mitigation lands. NWFWMD will manage the property for restoration and mitigation purposes, as necessary, and in accordance with the conservation easement. Long-term management is described in *Umbrella*, *Watershed-Based*, *Regional Mitigation Plan* (UWRMP) Section 11.7.

#### **11.0 REFERENCES**

- Bell, C. Ritchie and Bryan J. Taylor. *Florida Wild Flowers and Roadside Plants*. Chapel Hill: Laurel Hill Press, 1982.
- Boschung, H.T. and Mayden, R.L. 2004. Fishes of Alabama. Smithsonian Books. Washington D.C.
- Chafin, Linda G. Field Guide to the Rare Plants of Florida. Tallahassee: Florida Natural Areas Inventory, 2000.
- Clewell, Andre F. *Guide to the Vascular Plants of the Florida Panhandle*. Tallahassee: Florida State University Press, 1985.
  - \_\_\_\_\_\_. Natural Setting and Vegetation of the Florida Panhandle: An Account of the Environments and Plant Communities of Northern Florida West of the Suwannee River. Mobile: U. S. Army Corps of Engineers, 1986.
- Coile, Nancy C. and Mark A. Garland. *Notes on Florida's Endangered and Threatened Plants*. Fourth Edition. Gainesville: Florida Department of Agriculture and Consumer Services, 2003.
- Florida Department of Transportation, Surveying and Mapping Office, Geographic Mapping Section. "Florida Land Use, Cover and Forms Classification System. Third Edition. Handbook."January 1999
- Florida Natural Areas Inventory. *Guide to the Natural Communities of Florida*. Tallahassee: Florida Natural Areas Inventory and Florida Department of Natural Resources, 1990.



- Godfrey, Robert K. Trees, Shrubs, and Woody Vines of Northern Florida and Adjacent Georgia and Alabama. Athens: The University of Georgia Press, 1988.
- \_\_\_\_\_ and Jean W. Wooten. *Aquatic and Wetland Plants of Southeastern United States*. Athens: The University of Georgia Press, 1981.
- Hipes, Dan, et al. Field Guide to the Rare Animals of Florida. Tallahassee: Florida Natural Areas Inventory, 2001.
- Langeland, K. A. and K. Craddock Burks, editors. *Identification & Biology of Non-Native Plants in Florida's Natural Areas*. Gainesville: University of Florida IFAS Extension, 1998.

\_\_\_\_\_. "Florida Wetlands." *Florida Wildlife*, 44(5): 32-33.

- Murphy, Tim R., et al. Weeds of Southern Turfgrass: Golf Courses, Lawns, Roadsides, Recreational Areas, and Commercial Sod. Gainesville: University of Florida IFAS Extension, 2004.
- Myers, Ronald J. and John J. Ewel, editors. *Ecosystems of Florida*. Orlando: University of Central Florida Press, 1990.
- Nelson, Gil. The Ferns of Florida: A Reference and Field Guide. Sarasota: Pineapple Press, Inc., 2000.
   \_\_\_\_\_\_. The Shrubs and Woody Vines of Florida: A Reference and Field Guide. Sarasota: Pineapple Press, Inc., 1996.
- \_\_\_\_\_. The Trees of Florida: A Reference and Field Guide. Sarasota: Pineapple Press, Inc., 1994.
- NRCS. "Soil Survey of Escambia County" 2007
- NWFWMD. "Management Policies for Water Management Areas of the Northwest Florida Water Management District" 1998.
- Otto-Allender, Dana. The Phoenix Environmental Group, Incorporated. Letter: Development Potential Analysis for Perdido Bay Tract owned by Dutex Management Corporation. February 8, 1995.
- Peterson, M.S. University of Southern Mississippi. Department of Coastal Sciences. Personal Communication: telephone (1-228-872-4203) conversation 08/13/2009.
- Peterson, M.S., Fulling, G.L., Woodley, C.M. 2003. Status and Habitat Characteristics of the Saltmarsh Topminnow, Fundulus Jenkinsi (Evermann) in Eastern Mississippi and Western Alabama Coastal Bayous. Gulf and Caribbean Research. 15(51-59).
- Radford, Albert E., Harry E. Ahles, and C. Ritchie Bell. *Manual of the Vascular Flora of the Carolinas*. Chapel Hill: The University of North Carolina Press, 1968.
- Sibley, David Allen. *The Sibley Field Guide to Birds of Eastern North America*. New York: Alfred A. Knopf, Inc., 2003.



- Taylor, Walter Kingsley. *Florida Wildflowers in Their Natural Communities*. Gainesville: University Press of Florida, 1998.
- \_\_\_\_\_. The Guide to Florida Wildflowers. Dallas: Taylor Publishing Company, 1992.
- Tobe, John D., Ph.D., et al. Florida Wetland Plants: An Identification Manual. Tallahassee: Florida Department of Environmental Protection, 1998.
- Whitney, Ellie, et al. Priceless Florida: Natural Ecosystems and Native Species. Sarasota: Pineapple Press, Inc., 2004.
- Wunderlin, Richard P. *Guide to the Vascular Plants of Florida*. Gainesville: University Press of Florida, 1998.



# APPENDIX

A



| A | ppendix | A—Obse | rved Plant | Species. |
|---|---------|--------|------------|----------|
|---|---------|--------|------------|----------|

| Scientific Name                       | Common Name                        |
|---------------------------------------|------------------------------------|
| Acalypha gracilens                    | three seeded mercury               |
| Acer rubrum                           | red maple                          |
| Alternanathera philoxeroides          | alligatorweed                      |
| Ambrosia artemisiifolia               | common ragweed                     |
| Ammannia sp.                          | redstem                            |
| Amphicarpum muhlenbergianum           | blue maidencane                    |
| Andropogon virginicus var. virginicus | broomsedge bluestem                |
| Andropogon virginicus var. glaucus    | chalky bluestem                    |
| Aristida stricta                      | wiregrass                          |
| Aronia arbutifolia                    | red chokeberry                     |
| Arundinaria gigantea                  | switchcane                         |
| Aster tenuifolius                     | salt marsh aster                   |
| Baccharis halimifolia                 | sea myrtle                         |
| Bacopa monnieri                       | herb-of-grace                      |
| Balduina uniflora                     | oneflower honeycombhead            |
| Bidens mitis                          | smallfruit beggarticks             |
| Bignonia capreolata                   | crossvine                          |
| Bolboschoenus robustus                | sturdy bulrush                     |
| Callicarpa americana                  | beautyberry                        |
| Carex glausescens                     | clustered sedge                    |
| Carex stipate                         | owlfruit sedge                     |
| Carya glabra                          | pignut hickory                     |
| Centella asiatica                     | spadeleaf                          |
| Chamaecyparis thyoides                | atlantic white cedar               |
| Chasmanthium sp.                      | woodoats                           |
| Chrysopsis subulata                   | golden aster                       |
| Cladium jamaicense                    | jamaica swamp sawgrass             |
| Clethra alinfolia                     | sweet pepper bush                  |
| Cliftonia monoplylla                  | black titi                         |
| Colocasia esculenta                   | wild taro                          |
| Commelina diffusa                     | dayflower                          |
| Conradina canescens                   | false rosemary                     |
| Crinum americana                      | southern swamp lily                |
| Cyperus lecontei                      | Leconte's flatsedge                |
| Cyperus odoratus                      | fragrant flatsedge                 |
| Cyperus polystachyos                  | manyspike flatsedge                |
| Cyrilla racemiflora                   | red titi                           |
| Dicanthelium sp.                      | panic grass                        |
| Dichanthelium aciculare               | needleleaf witchgrass              |
| Dichanthelium acuminatum              | tapered witchgrass                 |
| Dichanthelium commutatum              | variable witchgrass                |
| Dichanthelium scabriusculum           | woolly witchgrass                  |
| Diodia virginiana                     | Virginia buttonweed                |
| Drosera brevifolia                    | dward sundew                       |
| Drosera intermedia                    | water sundew; spoonleaf sundew     |
| Drosera capillaris                    | pink sundew                        |
| Dulichium arundinaceum                | threeway sedge; sheathed galingale |
| Echinochloa muricata                  | rough barnyardgrass                |
| Eichhornia crassipes                  | common water-hyacinth              |
| Eleocharis tuberculosa                | conecup spikerush                  |
| Elephantopus elatus                   | florida elephant's-foot            |
| Eragrostis refracta                   | coastal lovegrass                  |
| Eriocaulon decangulare                | pipewort                           |
| Eupatorium compositifolium            | dog fennel                         |
| Eupatorium mikanioides                | semaphore thoroughwort             |
| Eupatorium morhii                     | Mohr's thoroughwort                |



| Scientific Name                              | Common Name                          |
|----------------------------------------------|--------------------------------------|
| Eupatorium perfoliatum                       | common boneset                       |
| Eupatorium rotundifolium                     | false hoarhound                      |
| Eupatorium semiserratum                      | smallflower thoroughwort             |
| Eupatorium serotinum                         | boneset                              |
| Euthamia graminifolia                        | grass-leaved goldenrod               |
| Euthamia minor                               | slender flattop goldenrod            |
| Fuirena brevisetaa                           | saltmarsh umbrellasedge              |
| Fuirena sciroides                            | southern umbrellasedge               |
| Fuirena scirpoidea                           | southern umbrellasedge               |
| Fuirena sp.                                  | umbrellasedge                        |
| Galactia volubilis                           | downy milkpea                        |
| Gaylussacia mosieri                          | woolly huckleberry                   |
| Gelsemium sempervirens                       | Florida jessamine                    |
| Habenaria repens                             | water-spider orchid                  |
| Hamamelis virginiana                         | American witchhazel                  |
| Helenium amarum                              | Spanish daisy; bitterweed            |
| Hibiscus aculeatus                           | comfortroot                          |
| Hibiscus grandiflorus                        | swamp rosemallow                     |
| Hydrocotyle sp.                              | marshpennywort                       |
| Hypericum brachyphyllum                      | coastalplain St. John's-wort         |
| Hypericum cistifolium                        | roundpod St. John's-wort             |
| Hypericum denticulatum                       | coppery St. John's-wort              |
| Hypericum gentianoides                       | Pineweeds; Orangegrass               |
| Hypericum hypericoides                       | St. Andrew's-cross                   |
| Hypericum mutilum                            | dwarf St. John's-wort                |
| Hypericum tetrapetalum                       | fourpetal St. John's-wort            |
| Ilex cassine                                 | dahoon                               |
| <i>Ilex coriacea</i>                         | large gallberry                      |
| Ilex glabra                                  | gallberry                            |
| <i>Ilex myrtifolia</i>                       | myrtle leaf holly                    |
| <i>Ilex vomitoria</i>                        | yaupon                               |
| Ipomoea sagittata                            | salt marsh morning glory             |
| Itea virginica                               | Virginia willow; Virginia sweetspire |
| Iva jrutescens                               | bigiear sumpweed                     |
| Juncus cf. scirpoides                        | heedlepod rush                       |
|                                              | bog rush; elliott s rush             |
| Juncus megacephalus                          | bighead rush                         |
| Juncus polycephalus                          | naadlanad rish                       |
| Juncus scirpoides                            | hleek poodle rush                    |
| Junitas Toemerianas                          | rad coder                            |
| Juniperus Virginiana                         | weterwillow                          |
| Justicia sp.<br>Kalmia hirsuta               | hairy wicky                          |
| Kaimu nii suu<br>Kostolotalwa wirainiga      | saeshara mallow                      |
| Kosteletzkyu virginicu                       | redroot                              |
| Lachnanines curoliana                        | whitehead bogbutton                  |
| Liatris sp                                   | shooting star                        |
| Liaustrum sinansa                            | chinese privet                       |
| Ligusitum sinense<br>Liriodendron tulinifera | tulintrae: vellow poplar             |
| Linouenaron impgera                          | hairy primrosevillow                 |
| Ludwigia sp                                  | rattlebox                            |
| Luuwigiu sp.                                 | fortail clubmoss                     |
| Lycopus sp                                   | waterborehound                       |
| Lycopus sp.                                  | Japanese climbing fern               |
| Lygouum juponicum                            | fetterbush                           |
| Lybrum lineare                               | wand loosestrife                     |
| Magnolia grandiflora                         | southern magnolia                    |
| Magnolia virginiana                          | sweethav                             |
| Malanthium virginicum                        | Virginia hunchflower                 |
| meannain virginicam                          | v nginia buncimowei                  |



| Scientific Name                         | Common Name                              |
|-----------------------------------------|------------------------------------------|
| Mikania scandens                        | milk vine                                |
| Mitreola petiolata                      | lax hornpod                              |
| Myrica cerifera                         | wax myrtle                               |
| Myrica heterophylla                     | evergreen bayberry; northern bayberry    |
| Nymphaea odorata                        | fragrant water lily                      |
| Nyssa sylvatica var. biflora            | tupelo                                   |
| Onoclea sensibilis                      | sensitive fern                           |
| Osmunda regalis                         | royal fern                               |
| Osmunda cinnamomea                      | cinnamon fern                            |
| Oxypolis filiformis                     | water cowbane                            |
| Panicum commutatum                      | variable witchgrass                      |
| Panicum repens                          | torpedograss                             |
| Panicum virgatum                        | switchgrass                              |
| Paspalum sp.                            | crowngrass                               |
| Peltandra sagittifolia                  | spoon flower                             |
| Persea borbonia                         | red bay                                  |
| Persea palustris                        | silk bay                                 |
| Phragmites australis                    | common reed                              |
| Phyla nodiflora                         | frogs- fruit                             |
| Physalis angustifolia                   | coastal groundcherry                     |
| Pinus elliottii                         | slash pine                               |
| Platanthera ciliaris                    | yellow fringed orchid                    |
| Platanus occidentalis                   | American sycamore; American planetree    |
| Pluchea odorata                         | cure-for-all                             |
| Pluchea purpurescens                    | annual salt marsh fleabane               |
| Pluchea rosea                           | rosy camphorweed                         |
| Pluchea sp.                             | camphorweed                              |
| Polygala cruciata                       | drumheads                                |
| Polygala cymosa                         | tall pinebarren milkwort                 |
| Polygala hookeri                        | hooker's milkwort                        |
| Polygala lutea                          | orange milkwort                          |
| Polygala nana                           | candyroot                                |
| Polygala ramosa                         | low pinebarren milkwort                  |
| Polygonum cf. hydropiperoides           | mild waterpepper; swamp smartweed        |
| Polygonum hydropiperoides               | mild waterpepper; swamp smartweed        |
| Polygonum punctatum                     | dotted smartweed                         |
| Proserpinaca pectinata                  | combleaf mermaidweed                     |
| Pteridium aquilinum var. pseudocaudatum | tailed bracken                           |
| Pterocaulon pycnostachyum               | blackroot                                |
| Quercus geminata                        | sand live oak                            |
| Quercus hemispherica                    | laurel oak; diamond oak                  |
| Quercus laurifolia                      | laurel oak; diamond oak                  |
| Quercus minima                          | dwarf live oak                           |
| Duercus pumila                          | running oak                              |
| Quercus virginiana                      | live oak                                 |
| Z<br>Rhexia alifanus                    | savannah meadow beauty                   |
| Rhexia mariana                          | pale meadowbeauty: Maryland meadowbeauty |
| Rhexia nashii                           | maid marian                              |
| Rhus copalinum                          | winged sumac                             |
| Rhynchospora cephalantha                | bunched beaksedge                        |
| Rhynchospora cf. inundata               | narrowfruit horned beaksedge             |
| Rhynchospora chalarocephala             | loosehead beaksedge                      |
| Rhynchospora chapmanii                  | Chapman's beaksedge                      |
| Rhynchospora ciliaris                   | fringed beaksedge                        |
| Rhynchospora fascicularis               | fascicled beaksedge                      |
| Rhynchospora gracilanta                 | slender beaksedge                        |
| Rhynchospora sp                         | heakrush                                 |
| Rubus aroutus                           | sawtooth blackberry                      |
| Rubus cunaifolius                       | sand blackberry                          |
| Ruous culleijouus                       | Sand Diackbelly                          |



| Scientific Name                 | Common Name                                        |
|---------------------------------|----------------------------------------------------|
| Rubus trivialis                 | southern dewberry                                  |
| Rhynchospora corniculata        | shortbristle horned beaksedge                      |
| Sabal minor                     | dwarf palmetto; bluestem palm                      |
| Sabal palmetto                  | sabal palm                                         |
| Sabatia brevifolia              | narrow-leaved sabatia                              |
| Sabatia macrophylla             | largeleaf rosegentian                              |
| Sagittaria latifolia            | broadleaf arrowhead; common arrowhead; duck potato |
| Sagittaria lancifolia           | bulltongue arrowhead                               |
| Salix caroliniana               | Carolina willow; coastalplain willow               |
| Sambucus canadensis             | American elder; elderberry                         |
| Sapium sebiferum                | popcorn tree                                       |
| Sarracenia leucophylla          | white top pitcher plant                            |
| Scleria oligantha               | littlehead nutrush                                 |
| Scirpus cyperinus               | wool-grass bulrush                                 |
| Serenoa repens                  | saw-palmetto                                       |
| Sesbania punicea                | rattlebox                                          |
| Smilax bona-nox                 | saw greenbrier                                     |
| Smilax laurifolia               | laurel greenbrier; bamboo vine                     |
| Smilax pumila                   | sarsaparilla vine                                  |
| Smilax sp.                      | greenbrierr                                        |
| Solidago sempervirens           | seaside goldenrod                                  |
| Spartina patens                 | marshhay cordgrass; saltmeadow cordgrass           |
| Sphagnum sp.                    | peat moss                                          |
| Stillingia aquatica             | water toothleaf; corkwood                          |
| Symplocos tinctoria             | common sweetleaf; horse sugar                      |
| Syngonanthus flavidulus         | yellow hatpins                                     |
| Taxodium ascendens              | pond cypress                                       |
| Thelypteris hispidula           | hairy maiden fern                                  |
| Thelypteris palustris           | marsh fern                                         |
| Toxicodendron radicans          | poison ivy                                         |
| Triadenum virginicum            | Virginia marsh St. John's-wort                     |
| Typha latifolia                 | cattail                                            |
| Utricularia sp.                 | bladderwort                                        |
| Vaccinium arboreum              | sparkleberry; farkleberry                          |
| Vaccinium corymbosum            | highbush blueberry                                 |
| Vaccinium elliottii             | highbush blueberry                                 |
| Vaccinium myrsinites            | shiny blueberry                                    |
| Viburnum nudum                  | possumhaw                                          |
| Vitis rotundifolia              | muscadine grape                                    |
| Woodwardia areolata             | netted chain fern                                  |
| Woodwardia virginica            | Virginia chain fern                                |
| Xyris sp.                       | yelloweyed grass                                   |
| Xyris caroliniana               | Carolina yelloweyed grass                          |
| Xyris elliottii                 | Elliott's yelloweyed grass                         |
| Xyris fimbriata                 | fringed yelloweyed grass                           |
| Xyris laxifolia var. iridifolia | irisleaf yelloweyed grass                          |
| Xyris platylepis                | tall yelloweyed grass                              |
| Xyris serotina                  | acidswamp yelloweyed grass                         |
| Xvris stricta                   | pineland velloweved grass                          |



# APPENDIX

В



# Appendix B—Observed and Target Wildlife Species on the Dutex Property

#### AMPHIBIANS

| Scientific Name                     | Common Name                     |  |  |  |  |  |  |  |
|-------------------------------------|---------------------------------|--|--|--|--|--|--|--|
| Acris gryllus                       | cricket frog                    |  |  |  |  |  |  |  |
| Acris gryllus                       | southern cricket frog           |  |  |  |  |  |  |  |
| Agkistrodon piscivorus              | cottonmouth                     |  |  |  |  |  |  |  |
| Alligator mississippiensis          | alligator                       |  |  |  |  |  |  |  |
| Ambystoma cingulatum                | flatwoods salamander            |  |  |  |  |  |  |  |
| Ambystoma talpoideum                | mole salamander                 |  |  |  |  |  |  |  |
| Ambystoma tigrinum                  | tiger salamander                |  |  |  |  |  |  |  |
| Amphiuma means                      | two-toed amphiuma               |  |  |  |  |  |  |  |
| Anolis carolinensis                 | green anole                     |  |  |  |  |  |  |  |
| Bufo quercicus                      | oak toad                        |  |  |  |  |  |  |  |
| Chelydra serpentina                 | snapping turtle                 |  |  |  |  |  |  |  |
| Cnemidophorus sexlineatus           | six-lined racerunner            |  |  |  |  |  |  |  |
| Coluber constrictor                 | black racer                     |  |  |  |  |  |  |  |
| Crotalus adamanteus                 | eastern diamondback rattlesnake |  |  |  |  |  |  |  |
| Crotalus spp.                       | diamondback rattlesnake         |  |  |  |  |  |  |  |
| Deirochelys reticularia             | chicken turtle                  |  |  |  |  |  |  |  |
| Desmognathus auriculatus            | southern dusky salamander       |  |  |  |  |  |  |  |
| Diadophis punctatus                 | ringneck snake                  |  |  |  |  |  |  |  |
| Elaphe guttata                      | red rat snake                   |  |  |  |  |  |  |  |
| Elaphe obsoleta quadrivittata       | yellow rat snake                |  |  |  |  |  |  |  |
| Elaphe obsoleta spiloides           | gray rat snake                  |  |  |  |  |  |  |  |
| Eumeces laticeps                    | broadhead skink                 |  |  |  |  |  |  |  |
| Eurycea quadradigitata              | dwarf salamander                |  |  |  |  |  |  |  |
| Farancia abacura                    | eastern mud snake               |  |  |  |  |  |  |  |
| Gastrophryne carolinensis           | narrowmouth toad                |  |  |  |  |  |  |  |
| Gopherus polyphemus                 | gopher tortoise                 |  |  |  |  |  |  |  |
| Heterodon simus                     | southern hognose snake          |  |  |  |  |  |  |  |
| Hyla chrysoscelis                   | Cope's gray treefrog            |  |  |  |  |  |  |  |
| Hyla cinerea                        | green treefrog                  |  |  |  |  |  |  |  |
| Hyla femoralis                      | pinewoods treefrog              |  |  |  |  |  |  |  |
| Hyla gratiosa                       | barking treefrog                |  |  |  |  |  |  |  |
| Hyla squirella                      | squirrel treefrog               |  |  |  |  |  |  |  |
| Kinosternon baurii                  | striped mud turtle              |  |  |  |  |  |  |  |
| Kinosternon subrubrum steindachneri | mud turtle                      |  |  |  |  |  |  |  |
| Lampropeltis elapsoides             | scarlet kingsnake               |  |  |  |  |  |  |  |
| Masticophis flagellum               | coachwhip snake                 |  |  |  |  |  |  |  |
| Micrurus fulvius                    | coral snake                     |  |  |  |  |  |  |  |
| Nerodia fasciata                    | banded water snake              |  |  |  |  |  |  |  |
| Nerodia floridana                   | green water snake               |  |  |  |  |  |  |  |
| Notophthalmus perstriatus           | striped newt                    |  |  |  |  |  |  |  |
| Opheodrys aestivus                  | rough green snake               |  |  |  |  |  |  |  |
| Ophisaurus ventralis                | eastern glass lizard            |  |  |  |  |  |  |  |
| Plethodon glutinosus                | slimy salamander                |  |  |  |  |  |  |  |
| Pseudacris nigrita                  | southern chorus frog            |  |  |  |  |  |  |  |
| Pseudacris ocularis                 | little grass frog               |  |  |  |  |  |  |  |
| Pseudacris ornata                   | ornate chorus frog              |  |  |  |  |  |  |  |
| Pseudacris spp.                     | chorus frog                     |  |  |  |  |  |  |  |
| Rana capito                         | gopher frog                     |  |  |  |  |  |  |  |
| Rana catesbeiana                    | bull trog                       |  |  |  |  |  |  |  |
| Rana clamitans clamitans            | bronze irog                     |  |  |  |  |  |  |  |
| Rana grylio                         | pig irog                        |  |  |  |  |  |  |  |
| Rana sphenocephala                  | reopard frog                    |  |  |  |  |  |  |  |
| Regina aneni                        | surped swamp snake              |  |  |  |  |  |  |  |
| Kegina rigida                       | crayiisii shake                 |  |  |  |  |  |  |  |
| Scalenorus undulatus                | castern fance lizerd            |  |  |  |  |  |  |  |
| Sceloporus unaulatus                | eastern rence nzard             |  |  |  |  |  |  |  |
| Seminateix magaa                    | ground skink                    |  |  |  |  |  |  |  |
| Siran intermedia                    | lacer siran                     |  |  |  |  |  |  |  |
| Siran lacarting                     | reaster siren                   |  |  |  |  |  |  |  |
| Siten accentita                     | pycmy rattleenake               |  |  |  |  |  |  |  |
| Storeria occipitomaculata           | red-bellied snake               |  |  |  |  |  |  |  |
| Terranene carolina                  | how turtle                      |  |  |  |  |  |  |  |
| i crupene curounu                   | oox turte                       |  |  |  |  |  |  |  |



#### BIRDS

| Scientific Name          | Common Name              |  |  |  |  |  |  |
|--------------------------|--------------------------|--|--|--|--|--|--|
| Accipitriformes spp.     | hawks                    |  |  |  |  |  |  |
| Aix sponsa               | wood duck                |  |  |  |  |  |  |
| Ardea alba               | great egret              |  |  |  |  |  |  |
| Ardea herodias           | great blue heron         |  |  |  |  |  |  |
| Baeolophus bicolor       | tufted titmouse          |  |  |  |  |  |  |
| Bubo virginianus         | great horned owl         |  |  |  |  |  |  |
| Buteo lineatus           | red-shouldered hawk      |  |  |  |  |  |  |
| Circus cyaneus           | northern harrier         |  |  |  |  |  |  |
| Coccyzus americanus      | yellowbellied cuckoo     |  |  |  |  |  |  |
| Colinus virginianus      | bobwhite                 |  |  |  |  |  |  |
| Compsothlypis americana  | parula warbler           |  |  |  |  |  |  |
| Corvus brachyrhynchos    | common crow              |  |  |  |  |  |  |
| Cyanocitta cristata      | blue jay                 |  |  |  |  |  |  |
| Dendroica pinus          | pine warbler             |  |  |  |  |  |  |
| Dryocopus pileatus       | pileated woodpecker      |  |  |  |  |  |  |
| Dumetella carolinensis   | catbird                  |  |  |  |  |  |  |
| Egretta caerulea         | little blue heron        |  |  |  |  |  |  |
| Egretta thula            | snowy egret              |  |  |  |  |  |  |
| Egretta tricolor         | tricolored heron         |  |  |  |  |  |  |
| Elanoides forficatus     | swallow-tailed kite      |  |  |  |  |  |  |
| Eudocimus albus          | white ibis               |  |  |  |  |  |  |
| Euphagus carolinus       | rusty blackbird          |  |  |  |  |  |  |
| Falco sparverius         | southeastern kestrel     |  |  |  |  |  |  |
| Grus canadensis          | sandhill crane           |  |  |  |  |  |  |
| Haliaeetus leucocephalus | bald eagle               |  |  |  |  |  |  |
| Melanerpes carolinus     | red-bellied woodpecker   |  |  |  |  |  |  |
| Meleagris spp.           | turkey                   |  |  |  |  |  |  |
| Mimus polyglottos        | mocking brid             |  |  |  |  |  |  |
| Mycteria americana       | woodstork                |  |  |  |  |  |  |
| Myiarchus crinitus       | great-crested flycatcher |  |  |  |  |  |  |
| Pandion haliaetus        | osprey                   |  |  |  |  |  |  |
| Passeriformes spp.       | songbirds                |  |  |  |  |  |  |
| Polioptila caerulea      | blue gray gnatcatcher    |  |  |  |  |  |  |
| Protonotaria citrea      | prothonotory warbler     |  |  |  |  |  |  |
| Scolopax minor           | woodcock                 |  |  |  |  |  |  |
| Sitta pusilla            | brown-headed nuthatch    |  |  |  |  |  |  |
| Strix varia              | barred owl               |  |  |  |  |  |  |
| Thryothorus ludovicianus | Carolina wren            |  |  |  |  |  |  |
| Vireo griseus            | white-eyed vireo         |  |  |  |  |  |  |
| Vireo olivaceus          | red-eyed vireo           |  |  |  |  |  |  |
| Zenaida macroura         | mourning dove            |  |  |  |  |  |  |

#### MAMMALS

| Scientific Name          | Common Name       |  |  |  |  |  |  |  |  |
|--------------------------|-------------------|--|--|--|--|--|--|--|--|
| Didelphis virginiana     | opossum           |  |  |  |  |  |  |  |  |
| Felis rufus              | bobcat            |  |  |  |  |  |  |  |  |
| Lontra canadensis        | river otter       |  |  |  |  |  |  |  |  |
| Mephitis mephitis        | striped skunk     |  |  |  |  |  |  |  |  |
| Neotoma floridana        | woodrat           |  |  |  |  |  |  |  |  |
| Neovison vison           | mink              |  |  |  |  |  |  |  |  |
| Odocoileus virginianus   | white-tailed deer |  |  |  |  |  |  |  |  |
| Peromyscus gossypinus    | cotton mouse      |  |  |  |  |  |  |  |  |
| Peromyscus polionotus    | beach mouse       |  |  |  |  |  |  |  |  |
| Procyon lotor            | raccoon           |  |  |  |  |  |  |  |  |
| Scalopus aquaticus       | eastern mole      |  |  |  |  |  |  |  |  |
| Sciurus carolinensis     | gray squirrel     |  |  |  |  |  |  |  |  |
| Sciurus niger            | fox squirrel      |  |  |  |  |  |  |  |  |
| Sigmodon hispidus        | cotton rat        |  |  |  |  |  |  |  |  |
| Soricidae spp.           | shrews            |  |  |  |  |  |  |  |  |
| Sylvilagus floridanus    | cottontail rabbit |  |  |  |  |  |  |  |  |
| Urocyon cinereoargenteus | gray fox          |  |  |  |  |  |  |  |  |
| Ursus americanus         | black bear        |  |  |  |  |  |  |  |  |

# INVERTEBRATES

| Scientific Name | Common Name   |  |  |  |  |  |  |  |
|-----------------|---------------|--|--|--|--|--|--|--|
| Neritina spp.   | olive nerites |  |  |  |  |  |  |  |
| Uca spp.        | fiddler crabs |  |  |  |  |  |  |  |



# APPENDIX

С





Wetland Forested Mixed (FLUCCS 630)



South of beaver pond (Gum Swamp; FLUCCS 613)



Wetland Forested Mixed (FLUCCS 630)



Ditch (FLUCCS 510)





Canopy opening in Pine Flatwoods (FLUCCS 411)



Titi Swamp (FLUCCS 614)



Pine Flatwoods (FLUCCS 411)



Titi Swamp (FLUCCS 614)





Bay Swamp with Privet (FLUCCS 611)



Beaver Dam (FLUCCS 747)



Beaver Pond (FLUCCS 534)



Titi Swamp (FLUCCS 614)







Slash Pine Swamp Forest (FLUCCS 627)



Lakes <10 Acres (FLUCCS 524)



Hardwood Conifer Mixed (FLUCCS 434)





Stream and Waterways (FLUCCS 510)



Hardwood Conifer Mixed/Stream and Waterways (Eleven Mile Creek; FLUCCS 434/510)



Ditch (FLUCCS 510)



Hydric Pine Flatwoods (FLUCCS 625)





Stream and Waterways (FLUCCS 510) with Wild Taro (Colocasia esculenta)



Freshwater Marsh (FLUCCS 641)



Beaches/Freshwater Marsh (FLUCCS 710/641)



Breder Trap Deployment





Common water hyacinth (*Eichhornia crassipes*)



# APPENDIX

D



June 24, 2010

|              |        |            |                 |        |                              |              | SCO                  |              |                     |                        |      |              |       |       |           |       |      |       |
|--------------|--------|------------|-----------------|--------|------------------------------|--------------|----------------------|--------------|---------------------|------------------------|------|--------------|-------|-------|-----------|-------|------|-------|
| FLUCCS Code  |        | MIT<br>ACT | UMAM<br>Polygon | Ac     | LOCATION<br>AND<br>LANDSCAPE |              | WATER<br>ENVIRONMENT |              | COMM<br>STRUC       | COMMUNITY<br>STRUCTURE |      | UMAM<br>WITH | DELTA | TIME  | P<br>FACT | RISK  | RFG  | LIFT  |
| CURRENT      | TARGET | CODE       |                 |        | W/OUT<br>or<br>CUR.          | WITH<br>MIT. | W/OUT<br>or CUR.     | WITH<br>MIT. | W/OUT<br>or<br>CUR. | WITH<br>MIT.           | MIT. | MIT.         |       | 2.110 |           |       |      |       |
| 434          | 434    | 6          | 1               | 9.89   | 0                            | 0            | 0                    | 0            | 0                   | 0                      | 0.00 | 0.00         | 0.00  | NA    | 1         | 1.00  | NA   | NA    |
| 441          | 411    | 2          | 2               | 6.82   | 0                            | 0            | 0                    | 0            | 0                   | 0                      | 0.00 | 0.00         | 0.00  | 1.68  | 1         | 1.75  | 0.00 | 0.00  |
| 441          | 411    | 3          | 3               | 22.89  | 0                            | 0            | 0                    | 0            | 0                   | 0                      | 0.00 | 0.00         | 0.00  | 1.46  | 1         | 1.50  | 0.00 | 0.00  |
| 510          | 510    | 6          | 4               | 3.03   | 0                            | 0            | 0                    | 0            | 0                   | 0                      | 0.00 | 0.00         | 0.00  | NA    | 1         | 1.00  | NA   | NA    |
| 510D         | 411    | 5          | 5               | 0.13   | 0                            | 0            | 0                    | 0            | 0                   | 0                      | 0.00 | 0.00         | 0.00  | 1.68  | 1         | 2.00  | 0.00 | 0.00  |
| 510D         | 510D   | 6          | 6               | 0.76   | 0                            | 0            | 0                    | 0            | 0                   | 0                      | 0.00 | 0.00         | 0.00  | NA    | 1         | 1.00  | NA   | NA    |
| 510D         | 626    | 5          | 7               | 0.17   | 2                            | 9            | 2                    | 9            | 2                   | 10                     | 0.20 | 0.93         | 0.73  | 1.68  | 1         | 2.00  | 0.22 | 0.04  |
| 524          | 524    | 6          | 8               | 2.31   | 0                            | 0            | 0                    | 0            | 0                   | 0                      | 0.00 | 0.00         | 0.00  | NA    | 1         | 1.00  | NA   | NA    |
| 534          | 411    | 6          | 9               | 1.21   | 0                            | 0            | 0                    | 0            | 0                   | 0                      | 0.00 | 0.00         | 0.00  | NA    | 1         | 1.00  | NA   | NA    |
| 534          | 613    | 6          | 10              | 11.28  | 7                            | 9            | 4                    | 9            | 3                   | 9                      | 0.47 | 0.90         | 0.43  | 1.16  | 1         | 1.00  | 0.37 | 4.21  |
| 534          | 626    | 6          | 11              | 6.85   | 7                            | 9            | 2                    | 9            | 1                   | 9                      | 0.33 | 0.90         | 0.57  | 1.07  | 1         | 1.00  | 0.53 | 3.63  |
| 611          | 611    | 4          | 12              | 4.78   | 7                            | 9            | 8                    | 9            | 7                   | 10                     | 0.73 | 0.93         | 0.20  | 1.03  | 1         | 1.25  | 0.16 | 0.74  |
| 613          | 611    | 4          | 13              | 1.07   | 7                            | 9            | 6                    | 9            | 7                   | 10                     | 0.67 | 0.93         | 0.27  | 1.03  | 1         | 1.25  | 0.21 | 0.22  |
| 613          | 613    | 6          | 14              | 24.80  | 7                            | 9            | 8                    | 9            | 9                   | 10                     | 0.80 | 0.93         | 0.13  | 1.00  | 1         | 1.00  | 0.13 | 3.31  |
| 614          | 614    | 6          | 15              | 5.24   | 7                            | 9            | 9                    | 9            | 9                   | 10                     | 0.83 | 0.93         | 0.10  | 1.00  | 1         | 1.00  | 0.10 | 0.52  |
| 625          | 625    | 2          | 16              | 5.41   | 7                            | 9            | 8                    | 9            | 6                   | 9                      | 0.70 | 0.90         | 0.20  | 1.03  | 1         | 1.00  | 0.19 | 1.05  |
| 625          | 625    | 3          | 17              | 2.47   | 7                            | 9            | 8                    | 9            | 6                   | 10                     | 0.70 | 0.93         | 0.23  | 1.07  | 1         | 1.25  | 0.17 | 0.43  |
| 625          | 625    | 4          | 18              | 21.06  | 7                            | 9            | 8                    | 9            | 6                   | 10                     | 0.70 | 0.93         | 0.23  | 1.07  | 1         | 1.25  | 0.17 | 3.67  |
| 625          | 626    | 2          | 19              | 38.53  | 7                            | 9            | 8                    | 9            | 6                   | 9                      | 0.70 | 0.90         | 0.20  | 1.03  | 1         | 1.25  | 0.16 | 5.99  |
| 625          | 626    | 3          | 20              | 77.59  | 7                            | 9            | 8                    | 9            | 6                   | 10                     | 0.70 | 0.93         | 0.23  | 1.07  | 1         | 1.25  | 0.17 | 13.54 |
| 625          | 626    | 4          | 21              | 5.78   | 7                            | 9            | 8                    | 9            | 6                   | 10                     | 0.70 | 0.93         | 0.23  | 1.07  | 1         | 1.25  | 0.17 | 1.01  |
| 627          | 611    | 4          | 22              | 19.93  | 7                            | 9            | 8                    | 9            | 8                   | 10                     | 0.77 | 0.93         | 0.17  | 1.07  | 1         | 1.25  | 0.12 | 2.48  |
| 627          | 626    | 3          | 23              | 4.93   | 7                            | 9            | 8                    | 9            | 5                   | 9                      | 0.67 | 0.90         | 0.23  | 1.07  | 1         | 1.25  | 0.17 | 0.86  |
| 631          | 611    | 2          | 24              | 12.51  | 7                            | 9            | 8                    | 9            | 9                   | 9                      | 0.80 | 0.90         | 0.10  | 1.16  | 1         | 1.00  | 0.09 | 1.08  |
| 631          | 631    | 2          | 25              | 5.16   | 7                            | 9            | 8                    | 9            | 9                   | 9                      | 0.80 | 0.90         | 0.10  | 1.00  | 1         | 1.00  | 0.10 | 0.52  |
| 641          | 641    | 2          | 26              | 180.67 | 7                            | 9            | 8                    | 9            | 9                   | 9                      | 0.80 | 0.90         | 0.10  | 1.03  | 1         | 1.00  | 0.10 | 17.54 |
| 641          | 641    | 6          | 27              | 1.88   | 7                            | 9            | 10                   | 10           | 9                   | 10                     | 0.87 | 0.97         | 0.10  | 1.00  | 1         | 1.00  | 0.10 | 0.19  |
| 710          | 710    | 2          | 28              | 4.31   | 0                            | 0            | 0                    | 0            | 0                   | 0                      | 0.00 | 0.00         | 0.00  | 1.07  | 1         | 1.00  | 0.00 | 0.00  |
| 747          | 411    | 1          | 29              | 0.05   | 0                            | 0            | 0                    | 0            | 0                   | 0                      | 0.00 | 0.00         | 0.00  | 1.68  | 1         | 2.00  | 0.00 | 0.00  |
| 747          | 613    | 1          | 30              | 0.19   | 7                            | 9            | 0                    | 9            | 0                   | 10                     | 0.23 | 0.93         | 0.70  | 1.16  | 1         | 1.00  | 0.60 | 0.11  |
| 747          | 626    | 1          | 31              | 0.05   | 7                            | 9            | 0                    | 9            | 0                   | 9                      | 0.23 | 0.90         | 0.67  | 1.07  | 1         | 1.00  | 0.62 | 0.03  |
| West Totals: |        | 481.75     |                 |        |                              |              |                      |              |                     |                        |      |              |       |       |           | 61.17 |      |       |



# APPENDIX

Е



June 24, 2010

|                               |                       |            |             |        | SCORE                        |              |                      |              |                        |              |               |              |       |      |      |        |      |       |
|-------------------------------|-----------------------|------------|-------------|--------|------------------------------|--------------|----------------------|--------------|------------------------|--------------|---------------|--------------|-------|------|------|--------|------|-------|
| FLUCCS Code                   |                       | MIT<br>ACT | UMAM        | Ac     | LOCATION<br>AND<br>LANDSCAPE |              | WATER<br>ENVIRONMENT |              | COMMUNITY<br>STRUCTURE |              | UMAM<br>W/OUT | UMAM<br>WITH | DELTA | TIME | Р    | RISK   | RFG  | LIFT  |
| CURRENT                       | TARGET                | CODE       | Polygon     |        | W/OUT<br>or<br>CUR.          | WITH<br>MIT. | W/OUT<br>or CUR.     | WITH<br>MIT. | W/OUT<br>or<br>CUR.    | WITH<br>MIT. | MIT.          | MIT.         |       | LAG  | FACT |        |      |       |
| 627                           | 625, 626              | 3a         | 3a          | 129.86 | 7                            | 9            | 8                    | 8            | 6                      | 9            | 0.70          | 0.87         | 0.17  | 1.03 | 1    | 1.25   | 0.13 | 16.81 |
| 441                           | 411                   | 3b         | 3b          | 2.55   | 7                            | 9            | 8                    | 8            | 6                      | 9            | 0.70          | 0.87         | 0.17  | 1.07 | 1    | 1.25   | 0.12 | 0.32  |
| 627                           | 625, 626              | 4ERa       | 4ERa        | 3.29   | 7                            | 9            | 8                    | 8            | 4                      | 9            | 0.63          | 0.87         | 0.23  | 1.07 | 1    | 1.25   | 0.17 | 0.57  |
| 611                           | 611                   | 4ERb       | 4ERb        | 0.65   | 7                            | 9            | 8                    | 8            | 4                      | 9            | 0.63          | 0.87         | 0.23  | 1.07 | 1    | 1.25   | 0.17 | 0.11  |
| 441                           | 411                   | 4ERc       | 4ERc        | 2.16   | 7                            | 9            | 8                    | 8            | 4                      | 9            | 0.63          | 0.87         | 0.23  | 1.07 | 1    | 1.25   | 0.17 | 0.38  |
| 627                           | 625, 626              | 4a         | 4a          | 15.90  | 7                            | 9            | 8                    | 8            | 6                      | 9            | 0.70          | 0.87         | 0.17  | 1.03 | 1    | 1.25   | 0.13 | 2.06  |
| 611, 614,<br>627, 630         | 611, 614,<br>627, 630 | 4b         | 4b          | 44.38  | 7                            | 9            | 8                    | 8            | 6                      | 9            | 0.70          | 0.87         | 0.17  | 1.03 | 1    | 1.00   | 0.16 | 7.18  |
| 441                           | 411                   | 4c         | 4c          | 3.88   | 7                            | 9            | 8                    | 8            | 6                      | 9            | 0.70          | 0.87         | 0.17  | 1.03 | 1    | 1.25   | 0.13 | 0.50  |
| 614, 627,<br>630              | 614, 627,<br>630      | 6          | 6           | 126.78 | 7                            | 9            | 8                    | 8            | 7                      | 9            | 0.73          | 0.87         | 0.13  | 1.03 | 1    | 1.00   | 0.13 | 16.41 |
| 611, 627,<br>630              | 611, 627,<br>630      | 6ER        | 6ER         | 9.42   | 7                            | 9            | 8                    | 8            | 4                      | 9            | 0.63          | 0.87         | 0.23  | 1.07 | 1    | 1.25   | 0.17 | 1.64  |
| East Totals:                  |                       |            | ast Totals: | 338.85 |                              |              |                      |              |                        |              |               |              |       |      |      |        |      | 45.99 |
| West and East Combined Total: |                       | 820.60     |             |        |                              |              |                      |              |                        |              |               |              |       |      |      | 107.16 |      |       |

# ADDENDUM - 4/9/12

