MODELING OF GROUND WATER FLOW IN
WALTON, OKALOOSA AND SANTA ROSA COUNTIES,
FLORIDA

Prepared for:

Northwest Florida Water Management District
81 Water Management Drive
Havana, Florida 32333

Prepared by:

HydroGeoLogic, Inc.
1155 Herndon Parkway, Suite 900
Herndon, VA 20170

Varut Guvansen
Professional Engineer
Certificate No. 49883
State of Florida

June 1, 2000

May 23, 2000



TABLE OF CONTENTS

Page

1.0 INTRODUCTION .....coiiiiiieeete ettt sttt ettt ettt sbe e st e bt e eabeeee 1
1.1 BACKGROUND ...ttt ettt ettt et e e ea 1

1.2 PURPOSE AND SCOPE ...ttt 1

1.3 LOCATION AND EXTENT OF STUDY AREA ....cccooiiiiiiieiieeeeeeen 1

2.0  TECHNICAL APPROACH ..ottt 3
2.1 OVERALL APPROACH .....ooiiiiiiieeee et 3

2.2 CODE SELECTION ...ttt ettt ettt ettt e 3

3.0  PREVIOUS INVESTIGATIONS. ...ttt sttt 5
4.0 HYDROGEOLOGICAL SETTING ..cuttiiiiiiiiieiieeieeee ettt 7
4.1 INTRODUCTION ...ttt ettt ettt sttt st et e aee e eee 7

4.2  PHYSIOGRAPHY AND GEOLOGIC FRAMEWORK ........ccccocceiiiiniiiiiieen. 8

4.2.1  PRySIOZIaAPNY ....oviiiiiieciieece ettt e e 8

N € 110 [0 . RS 9

43  LOCAL HYDROGEOLOGY AND STRATIGRAPHY ....ccccooiiiiiiiiiiiieieee 9

4.3.1 Sand-and-Gravel AQUITET ........ccceeeiiieiieeiiieeceee e e 9

4.3.2 Intermediate SYStEIM .......ccoviiiiiiiieiiieeciieeriee et e e e e enae e 11

4.3.3 Upper Floridan AQUIifer..........cccvieiiiieiiieeiieeiee et 12

4.3.4 Bucatunna Clay Confining Unit..........ccceeviieeiiieeiieeeiie e 13

4.3.5 Lower Floridan AQUifer..........cccviiiiiieiiieeieeeiie e 14

4.3.6  Sub-Floridan SyStem .........cccceeeiiiiiiiieiiie et 15

4.4  POTENTIOMETRIC DATA ..ottt 16

4.4.1 Potentiometric Data on Sand-and-Gravel Aquifer............ccceeveeriiieeenennn. 16

4.4.2 Potentiometric Data on Upper Floridan Aquifer...........ccccceevvveenieerennen. 16

4.4.3 Potentiometric Data on Lower Floridan Aquifer............ccccceevevieenciiennnnennn. 16

4.5 RECHARGE AND DISCHARGE ........coooiiiiiiieeeee e 16

5.0  GROUND WATER FLOW MODEL CALIBRATION ......cccccooiiiiiiiiiiniiiieeieeeeene 19
5.1 CONCEPTUAL MODELING FRAMEWORK .......ccoooiiiiiiiiiienceeeeen 19

5.2  NUMERICAL MODELING ASSUMPTIONS ..o, 21

5.3 FLOW MODEL CODE .....coouiiiiiiiie ettt 21

54  MODEL DOMAIN AND FINITE-DIFFERENCE GRID DESIGN..................... 22

5.5 BOUNDARY CONDITIONS ...ttt 23

5.6  MATERIAL PROPERTIES ...t 24

5.7  CALIBRATION PROCEDURE ......ccccooiiiiiiiiiiiiee et 26

5.8 CALIBRATION TARGETS ...ttt 26

5.9  CALIBRATION RESULTS ...ttt 26

5.10  PRE-DEVELOPMENT VERIFICATION RESULTS......ccccooiiiiiiiiiiieieeeeee, 28

May 23, 2000 1 HydroGeoLogic, Inc.



TABLE OF CONTENTS

Page
5.11 MODEL SENSITIVITY ANALYSES......ootoeeeeeeeseeeeeee e 29
5.11.1 Sensitivity t0 Recharge...........cocevviieiiiiiiiiiiiiiieeeeeeceee e 29
5.11.2 Sensitivity to Floridan Aquifer TranSmissivity ........cccoccveeeeerieenieenveennens 29
5.11.3 Sensitivity to Vertical Conductivity of the
Intermediate SYSTEM .......cccuieiiiiiiiiiieeieee e 30
6.0  SUMMARY AND CONCLUSIONS. ..ottt 32
7.0 REFERENCES ......c.ioiotiieeee ettt sttt ettt aenbesbeene s 33

May 23, 2000 1i HydroGeoLogic, Inc.



LIST OF TABLES

Table 4.1 Geologic Units in Southern Okaloosa and Walton Counties and
Their Hydrogeologic Equivalents (Barr, 1983)

Table 4.2 Specific Capacities of Floridan Aquifer Wells

Table 4.3 Well Pumpage Data as Used in the Model (yearly average daily rate)

Table 5.1 Observed and Simulated Ground Water Elevations for 1990
Pumping Conditions and Residual Calibration

Table 5.2 Calibrated Model Water Budgets for 1990 Pumping Conditions

Table 5.3 Calibrated Model Water Budgets for Pre-development Conditions

May 23, 2000 111 HydroGeoLogic, Inc.



LIST OF FIGURES

Figure 1.1
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Figure 5.5
Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17

Figure 5.18
Figure 5.19

May 23, 2000

Location of Study Area

Hydrogeologic Structure of the Study Area

Land Surface Elevation for Modeled Region

Measured Floridan Aquifer Transmissivity Values

Estimated Pre-development Potentiometric Surface of the Floridan Aquifer System
Observed Potentiometric Surface of the Upper Floridan Aquifer System, May 1990
Location of Wells Simulated in the Model

Plan View of Discretized Region

Elevation of Top of Model Layer 1 Representing Land Surface

Thickness of Model Layer 1 Representing the Sand-and-Gravel Aquifer

Elevation of Top of Model Layer 2 Representing the Top of the

Intermediate System

Thickness of Model Layer 2 Representing the Intermediate System

Elevation of Top of Model Layer 3 Representing the Top of the Floridan Aquifer
System

Thickness of Model Layer 3 Representing the Upper Floridan Aquifer and the Upper
Portion of the Undifferentiated Floridan Aquifer System

Elevation of Top of Model Layer 4 Representing the Top of the Bucatunna Clay
Confining Unit and the Middle Portion of the Undifferentiated Floridan Aquifer
System

Thickness of Model Layer 4 Representing the Bucatunna Clay Confining Unit and
the Middle Portion of the Undifferentiated Floridan Aquifer System

Elevation of Top of Model Layer 5 Representing the Top of the Lower Floridan
Aquifer and the Lower Portion of the Undifferentiated Floridan Aquifer System
Thickness of Model Layer 5 Representing the Lower Floridan Aquifer and the Lower
Portion of the Undifferentiated Floridan Aquifer System

Elevation of Bottom of Model Layer 5 Representing the Top of the Sub-Floridan
System

Distribution of Recharge and Prescribed Head Boundary Conditions for Model
Layer 1

Distribution of River Boundary Cells for Model Layer 1

Distribution of River Boundary Cells for Model Layer 3

Calibrated Vertical Hydraulic Conductivity of Model Layer 2

Calibrated Transmissivity of Model Layer 3

Calibrated Vertical Hydraulic Conductivity of the Bucatunna Clay Confining Unit
Calibrated Transmissivity of the Middle Portion of the Undifferentiated Floridan
Aquifer System

v HydroGeoLogic, Inc.



LIST OF FIGURES

Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31
Figure 5.32
Figure 5.33

Figure 5.34

Figure 5.35
Figure 5.36

Figure 5.37
Figure 5.38

Figure 5.39
Figure 5.40

Figure 5.41

May 23, 2000

Calibrated Transmissivity of Model Layer 5

Calibrated Transmissivity of the Entire Thickness of the Floridan Aquifer System
Simulated Water Level Distribution for Model Layer 1 for the Calibration Simulation
of 1990 Pumping Conditions

Simulated Water Level Distribution for Model Layer 3 for the Calibration Simulation
of 1990 Pumping Conditions

Simulated Water Level Distribution for Model Layer 5 for the Calibration Simulation
of 1990 Pumping Conditions

Water Level Residuals for Model Layer 3 for the Calibration Simulation of 1990
Pumping Conditions

Water Level Residuals for Model Layer 5 for the Calibration Simulation of 1990
Pumping Conditions

Scatter Plot of Simulated Versus Measured Heads for the Calibration Simulation of
1990 Pumping Conditions

Frequency Distribution of Ground Water Residuals for the Calibration Simulation of
1990 Pumping Conditions

Simulated Water Level Distribution for Model Layer 1 for Pre-development
Conditions

Simulated Water Level Distribution for Model Layer 3 for Pre-development
Conditions

Simulated Water Level Distribution for Model Layer 5 for Pre-development
Conditions

Simulated Water Level Difference between Pre-development and 1990 Pumping
Conditions for Model Layer 1

Simulated Water Level Difference between Pre-development and 1990 Pumping
Conditions for Model Layer 3

Simulated Water Level Difference between Pre-development and 1990 Pumping
Conditions for Model Layer 5

RMS Error Sensitivity to Recharge

Water Level Difference between Base Case and Sensitivity Simulation to Recharge
of 26 in/yr for Model Layer 1

Water Level Difference between Base Case and Sensitivity Simulation to Recharge
of 26 in/yr for Model Layer 3

Water Level Difference between Base Case and Sensitivity Simulation to Recharge
of 26 in/yr for Model Layer 5

RMS Error Sensitivity to Floridan Aquifer Transmissivity

Water Level Difference between Base Case and Sensitivity Simulation to
Transmissivity (with a scaling factor of 1.4) for Model Layer 1

Water Level Difference between Base Case and Sensitivity Simulation to
Transmissivity (with a scaling factor of 1.4) for Model Layer 3

\'% HydroGeoLogic, Inc.



LIST OF FIGURES

Figure 5.42
Figure 5.43
Figure 5.44

Figure 5.45

Figure 5.46

May 23, 2000

Water Level Difference between Base Case and Sensitivity Simulation to
Transmissivity (with a scaling factor of 1.4) for Model Layer 5

RMS Error Sensitivity to Vertical Hydraulic Conductivity of the Intermediate System
Water Level Difference Between Base Case and Sensitivity Simulation to Vertical
Hydraulic Conductivity of the Intermediate System (with a scaling factor of 5) for
Model Layer 1

Water Level Difference between Base Case and Sensitivity Simulation to Vertical
Hydraulic Conductivity of the Intermediate System (with a scaling factor of 5) for
Model Layer 3

Water Level Difference between Base Case and Sensitivity Simulation to Vertical
Hydraulic Conductivity of the Intermediate System (with a scaling factor of 5) for
Model Layer 5

vi HydroGeoLogic, Inc.



MODELING OF GROUND WATER FLOW IN
WALTON, OKALOOSA, SANTA ROSA, AND ESCAMBIA
COUNTIES, FLORIDA

1.0  INTRODUCTION
1.1 BACKGROUND

The Northwest Florida Water Management District (NWFWMD), in the issuance of consumptive
use permits and water supply planning, has the primary objective of protecting its water resources
and the ecosystems sustained by it. Ground water use in the area has increased consistently since
pre-development times, with only a few wells tapping the resources before 1941 (Trapp et al., 1977).
An associated decline has been observed in the potentiometric surface of the Upper Floridan Aquifer,
of as much as 160 feet (ft) in the last 50 years of development. Additional development of ground
water in the region, therefore, needs to be carefully planned to minimize adverse impacts on the
aquifer systems, and on all existing water withdrawals and uses. An analysis of the hydrogeologic
system and water budgets of this sub-region using numerical simulations can determine the
stress/response behavior required for managing the water resources. A simulation model is thus
required, which reproduces major features and behavior of ground water flow in the region and will
be a valuable tool in assessing the system’s water availability.

1.2 PURPOSE AND SCOPE

The goal of this study is to provide a calibrated, numerical model of ground water flow, which may
be used to manage the water resources of the system. A fully three-dimensional ground water flow
model of the system is first developed and calibrated to quantify the water budgets and
potentiometric levels in the region. The model is calibrated to steady state, 1990 average daily rate
pumping conditions for the Floridan Aquifer system, and verified using estimates of pre-
development conditions. Sensitivity analyses are then performed to identify the impacts of
uncertainty in model parameters on the simulated behavior of the system. The model may be applied
to investigate the impacts of various future pumping strategies on the hydrogeologic system and on
adjacent users. Specific questions that the model is capable of answering include the ultimate impact
of expanded withdrawals from the Floridan Aquifer on the water resource, on adjacent users, and
potential impacts on the water table, wetlands, and streams. The calibrated model will also serve
as a baseline for conducting more detailed investigations of water resources evaluation using
transient analyses, for saltwater intrusion analyses in localized areas of interest, and for regional
water supply planning.

1.3 LOCATION AND EXTENT OF STUDY AREA

The study area is located in northwestern Florida. Figure 1.1 shows the domain of study which
encompasses Escambia, Santa Rosa, Okaloosa, and Walton counties and parts of Bay, Washington,
and Holmes counties in Florida, and extends north into parts of Escambia, Covington, and Geneva
counties in Alabama for about 18 miles from the Florida/Alabama border. The southern extent of
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the domain lies in the Gulf of Mexico, approximately 21 miles south of Destin, near the mouth of
the Choctawhatchee Bay. The east-west extent of the domain stretches for approximately 121 miles,
and the north-south extent, for approximately 82 miles encompassing an area of over 9,900 square
miles.

The area of investigation lies mainly in two physiographic divisions (Puri and Vernon, 1964): the
Gulf Coastal Lowlands and the Western Highlands. The Gulf Coastal Lowlands region contains
sand dunes, beach ridges, and wave-cut bluffs along the coast, and swamps and flat woods a few
miles inland. The Western Highlands region, which generally ranges in altitude from 50 to 200 ft
above sea level (ASL), consists largely of sand hills cut by streams that have high base runoff and
usually occupy deep, narrow ravines.

The Sand-and-Gravel Aquifer and the Floridan Aquifer system comprise the major water bearing
units in the region. Ground water recharge occurs predominantly in the north via rainfall infiltration
and flows in a dominantly southward direction to ultimately discharge into the Gulf of Mexico.
Wells tapping the upper part of the Floridan Aquifer supply most of the water used in the study area.
The Floridan Aquifer system is therefore of primary concern for this investigation. The Sand-and-
Gravel Aquifer, although utilized as a primary source of water farther west in Escambia and Santa
Rosa counties, is not a primary source of water in Okaloosa and Walton counties. However, the
Sand-and-Gravel Aquifer has become important because of steadily increasing demands being placed
on the Floridan Aquifer which have resulted in declining water levels, increasing pumping costs,
interference between wells, and a potential for saline water intrusion. Further, streams and rivers
in the area which supply critical water for the ecosystems in the bays are in close communication
with the Sand-and-Gravel Aquifer, which is therefore included in the numerical investigation.
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2.0 TECHNICAL APPROACH

2.1 OVERALL APPROACH

Following is the procedure used for obtaining a reliable numerical groundwater flow model of a sub-
region of the NWFWMD, which is shown in Figure 1.1. All data available for the domain of interest
and its adjoining areas are first compiled and reviewed to form a conceptual understanding of the
hydrogeologic system. Reliable data are then extracted for simulation purposes. Arc/Info is used to
compile all hydrogeologic, geologic, and hydrologic information of the modeling area to create a
Ground Water Information System (GWIS) and express the conceptual flow system. A three-
dimensional finite-difference grid is generated next over the model domain, and the conceptual flow
system is expressed numerically for simulations using the ground water flow code, MODFLOW.
The system is then calibrated by systematically adjusting material parameters and the
conceptualization, until the numerical expression is representative of the physical flow system. Pre-
development and post-development conditions are investigated to calibrate and verify the model.
Finally, a sensitivity analysis on critical parameters is performed to identify the impacts of variations
in model parameters on the simulated behavior of the system.

2.2 CODE SELECTION

The ground water flow code MODFLOW (McDonald and Harbaugh, 1988) is selected to develop
the sub-regional flow model for the study area. MODFLOW is a well-accepted, public domain flow
code developed by the USGS, and has been used in many previous studies to model regional ground
water flow in various parts of Florida including within the NWFWMD jurisdiction. MODFLOW
is capable of simulating steady state and transient three-dimensional flow in multi-aquifer,
heterogeneous, anisotropic systems for confined and unconfined conditions. Several boundary
conditions may be incorporated into a MODFLOW simulation, including Dirichlet conditions,
recharge, wells, drains, rivers and streams. These capabilities are necessary and sufficient to
simulate ground water flow conditions in the sub-region for purposes of quantifying water budgets
and managing the water resources. Furthermore, MODFLOW is computationally efficient, relatively
easy to use, and is interfaced with numerous accessory softwares for efficient pre- and post-
processing capabilities.

Limitations to MODFLOW, as related to the current work include:

e MODFLOW is designed to simulate ground water flow in porous media. The code may not be
used to explicitly model flow in individual fractures, faults or solution cavities.

e The effects of density and/or temperature on the ground water flow field are not considered.
Therefore, in regions where dissolved solids in ground water affect the flow pattern, these
density effects are neglected.

e The aquifer material within each grid cell is assumed to be homogeneous and the grid is assumed

to be aligned with the principal directions of hydraulic conductivity if the aquifer material is
anisotropic.
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e Stresses applied to a grid cell (e.g., pumping) are assumed to be distributed uniformly over the
entire cell volume.
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3.0  PREVIOUS INVESTIGATIONS

Several field and modeling studies have been conducted in the domain of interest shown in Figure
1.1. As summarized by Barr (1983), the earliest available studies by Sellards and Gunter (1912)
describe the water resources, physiography, drainage, wells, and soils of Walton County, which
originally included what is now Okaloosa County, and indicate several locations adjacent to
Choctawhatchee Bay where flowing artesian wells could be drilled. Matson and Sanford (1913)
discuss the surface features, geology, and water supply of the Walton-Okaloosa County area.
Barraclough and Marsh (1962) describe the system of aquifers and ground water quality along the
gulf coast from the Choctawhatchee River to the Perdido River (the western boundary between
Florida and Alabama, also the western boundary of the domain of interest for this study). Foster and
Pascale (1971) provide data on the streamflow, water quality, and ground water levels in Okaloosa
County and adjacent areas. Pascale (1974) describes in detail the climate, hydrogeologic
characteristics, hydraulic properties, yield, water levels and budgets, and water quality of the upper
part of the Floridan Aquifer and to a lesser extent, the Sand-and-Gravel Aquifer and surface water
features in Walton County. Pascale (1976) provides details on construction and aquifer testing of
two deep injection wells in the Lower Floridan Aquifer, with simulations of this aquifer conducted
by Merritt (1984) to understand injection response behavior of the deeper zone.

CH2M Hill (1996) conducted similar simulations in the same area to examine the effects of a third
proposed injection well at the site. The results of an extensive investigation of the water resources
and quality of Okaloosa County and part of western Walton County were published in a report by
Trapp et al. (1977). Wagner et al. (1980) give a comprehensive listing of basic hydrologic data for
Okaloosa and Walton counties. Maslia and Hayes (1988) provide estimates of the regional pre-
development potentiometric surface of the Floridan aquifer system. Barr et al. (1981) describe the
ground and surface water resources of southern Okaloosa and Walton counties including the results
of model simulations of various pumping schemes for both the Floridan and Sand-and-Gravel
Aquifers. Hayes and Barr (1983) provide a detailed examination of the Sand-and-Gravel Aquifer
in southern Okaloosa and Walton counties, as a result of its increased importance as a secondary
source of water. Barr (1983) further details the hydrogeology and water quality in the vicinity of
Choctawhatchee Bay in southern Walton and Okaloosa counties, and Barr et al. (1985) analyze the
hydrogeology, water budgets, and water quality of the area, including the water-table, Upper Floridan
and Lower Floridan Aquifer systems. Bush and Johnston (1988) provide a regional analysis of the
entire Floridan Aquifer system including parts of Alabama. They present general trends in water
level declines from pre-development conditions, as well as regional hydrogeologic analysis of the
Floridan Aquifer.

An analysis of net ground water recharge in Okaloosa County is provided by Vecchioli et al. (1990)
as a first attempt to quantify this parameter from estimates of rainfall and evapotranspiration.

Previous studies typically focused only on recharge to the Upper Florida Aquifer. Ground water
recharge estimates for Escambia and Santa Rosa counties are provided by Grubbs (1995). Pratt et
al. (1996a) examine available data in the Choctawhatchee Bay area of Walton County, and develop
a numerical model of the Floridan Aquifer system to examine local drawdowns under various
pumping conditions, for a range of uniformly assigned hydrogeologic properties. Numerical
modeling investigations of the current study area were also conducted by Richards (1993) for the
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Floridan Aquifer system to comprehend sub-regional hydraulics, and investigate the effects of further
development for various well spacings and discharges, under a range of aquifer conditions. A similar
analysis was conducted by Richards (1997), covering the eastern portions of the current study area
and beyond. Finally, Pratt et al. (1996b) provide Arc/Info coverages depicting structural elevations
and potentiometric levels for the hydrogeologic units in the study area. These GIS layers represent
a compilation and interpretation on a regional scale of all reliable data available within the domain,
and provide an understanding of the hydrogeologic setting of the study area.
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4.0 HYDROGEOLOGICAL SETTING
4.1 INTRODUCTION

An initial understanding of the behavior of the system is obtained by examining the hydrologic
setting of the region. Calibration simulations then improve conceptualization of the flow of fluids
within the domain and point out data gaps and misrepresentations of the system behavior.

Specifically, data collected from core samples or local-scale investigations and laboratory tests may
not accurately depict system behavior for regional simulations in the case of scale-dependent
parameters or parameters with high local variations, not captured by the monitoring well network.
Therefore, acquisition and compilation of hydrogeologic and hydrologic data throughout the region
of interest in an appropriate manner are important processes reflected in the accuracy of the results.

Data compilation and interpretation, and development of the model are inter-linked processes. The
level of detail of a modeling effort depends on the available data, and the necessity of data depends
on the level of complexity of the model. This does not necessarily imply that the complexity of the
model should increase with the availability of data. Rather, the scale of the modeling effort should
be taken in perspective with the objectives of the simulation study, the availability of reliable data,
the scale of heterogeneity of the site and the density of the data points. Sensitivity analyses then
determine the degree of variation of the results due to inaccuracies in model input (within realizable
limits for the site), thus suggesting future monitoring and data acquisition strategies.

The objective of this modeling effort is to understand and quantify the hydrological behavior of the
Floridan Aquifer system within a sub-region of the NWFWMD. The Floridan Aquifer system is of
interest since it is a primary source of water; however, the surficial aquifer system is becoming
increasingly important as a possible secondary source of water due to limited resources and is
therefore included as an aquifer unit in the model study. It is also of relevance as a source of
recharge to the underlying Floridan Aquifer system. Significant surface water features (rivers and
streams) are largely fed by ground water, and their flow rates have an impact on the ecology of the
rivers, streams and bays in the region, and are also included in this study. The data assimilation
effort therefore focuses on collecting appropriate information to enable modeling of these important
hydrologic features. General data available for the site include:

1. Recharge/Discharge Information. Generalized information is available for rainfall and
potential evapotranspiration of the region, providing rough estimates of recharge to the
surficial aquifer system. Modeling analyses and examination of other pertinent data also
provide recharge/discharge estimates for the aquifer systems in the region.

2. Stream Flows. Discharge estimates of the Floridan Aquifer to the Choctawhatchee River
and Holmes Creek are available, where these surficial features are connected to the Floridan

Aquifer. These discharges will be examined during model calibration.

3. Hydrostratigraphy and Aquifer Information. The aquifer systems underlying the area of
investigation have been extensively studied since the early 1900s, with intensive efforts on
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mapping stratigraphy and hydrogeologic properties during the 1970s and 1980s. The District
is continually updating this understanding, as new data becomes available.

4. Topography. Topographic data for the region are available as DEMs (Digital Elevation
Models) or DLGs (Digital Line Graphs) from the USGS. This information is useful in
delineating land surface elevation and streambed elevation for the rivers and streams, and in
identifying low lying areas covered by wetlands and marshes. The land surface elevation is
significant in this steady-state simulation study for characterizing interactions at the surface
such as seepage faces and overland runoff. It is further used in this study for estimating
elevations for river beds, and in lower lying areas of reduced recharge or discharge into
wetlands or marshes, via seepage.

5. Water Level Information. Potentiometric levels of the Floridan Aquifer are available for
several years, at monitoring wells in the study area. This data has been interpreted to provide
average potentiometric contours for the system. Potentiometric levels for 1990 are of
particular interest in this study for the purpose of model calibration. Pre-development
conditions have also been estimated and mapped for the system. Little data exists for the
Lower Floridan Aquifer, and it is believed that hydraulic heads in the Lower Floridan were
almost equal to Upper Floridan Aquifer heads during pre-development times. Currently, the
Upper Floridan Aquifer heads are lower than Lower Floridan Aquifer heads due to pumping
from the Upper Floridan Aquifer, and injection into the Lower Floridan Aquifer. Water
levels of the Sand-and-Gravel Aquifer are available at monitoring locations. They have also
been assimilated by the District and lie close to the land surface in much of the domain.

6. Pumping. The District, as monthly rates and yearly averages, has assimilated information
regarding pumping stresses and locations within the study domain over the past several years.
Most pumping in Okaloosa and Walton counties occurs in the Upper Floridan Aquifer, with
only about five percent of the water supply coming from the surficial aquifer. In Escambia
and Santa Rosa counties, most of the pumping occurs in the Sand-and-Gravel Aquifer. Deep
injection wells in the Lower Floridan Aquifer also exist in Escambia and Santa Rosa
counties. Pumping information for the Floridan Aquifer system for 1990 average daily
withdrawal rates is of particular interest in this study for model calibration.

4.2  PHYSIOGRAPHY AND GEOLOGIC FRAMEWORK
4.2.1 Physiography

The area of investigation lies in the Gulf Coastal Lowlands and the Western Highlands topographic
divisions in Florida, as summarized by Pascale (1974). The Coastal Lowlands contain white-sand
beaches and sand dune ridges along the coast, with swamps and flatwoods 10 to 15 miles further
inland. The Lowlands generally range in elevation from sea level to 100 ft. Numerous creeks
connect with the gulf. The swamps and flatwoods are in an area adjacent to Choctawhatchee Bay
and River and extend approximately 15 miles north from the coast. The swamps include the low,
poorly drained areas south of Choctawhatchee Bay and in the flood plain of the Choctawhatchee
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River, usually less than 30 ft ASL. The flatwoods forest area north of the bay is generally well
drained by small streams, which discharge into the bay.

The Western Highlands extend northward from the Coastal Lowlands into Alabama. The southern
part consists of gently rolling sandhills, which range in elevation from 100 to 250 ft ASL and are
characterized by the steepness of the heads of many streams that drain the area. The northern part
contains swampy bays in the north central and the hilly section along the Florida/Alabama state line
where elevations are as much as 345 ft ASL. Trapp et al. (1977) further sub-divide these
physiographic features in Okaloosa County to better understand the runoff and infiltration
characteristics of the system.

4.2.2 Geology

Schmidt (1984) defines the Neogene and Paleogene formations down to the Upper Eocene Ocala
Limestone within the study area. The middle Eocene to Recent series contains the major
hydrogeologic units of interest for this study. The strata consist mainly of marine limestone, clay,
and sand. Table 4.1 details the stratigraphic units and lithologic description, and correlates the
formations to hydrogeologic units. The Recent to Pliocene formations constitute the uppermost
hydrogeologic unit, the Sand-and-Gravel Aquifer. Upper to Middle Miocene units constitute the
Intermediate System, which typically acts as a confiner to the Upper Floridan Aquifer beneath it. The
Upper Floridan Aquifer is comprised of Lower Miocene and Upper Oligocene strata, while the
Middle to Lower Oligocene members constitute the Bucatunna Clay confining unit, where it exists,
up to coastal Walton and Okaloosa counties in the east. Finally, the Upper Eocene and Middle
Eocene formations constitute the Lower Floridan Aquifer and the Sub-Floridan system (Claiborne
Stage sediments) at the bottom. The Sub-Floridan system is predominantly impermeable and
constitutes the base of the ground water flow system for this study.

4.3 LOCAL HYDROGEOLOGY AND STRATIGRAPHY

The hydrogeologic units of interest in the study area are contained in the Middle Eocene to Recent
Series as presented in Table 4.1. The geologic units are further classified into hydrogeologic layers
depending on transmissive and storage properties of the rocks. The principal hydrologic zonation
from top to bottom consists of the Sand-and-Gravel Aquifer, which forms the surficial system, the
Intermediate System regional confining unit, the Upper Floridan Aquifer, the Bucatunna Clay
confining unit (where present) and the Lower Floridan Aquifer. Table 4.1 shows the ranges of
thicknesses for these layers, and summarizes their hydrogeologic characteristics. Figure 4.1 shows
a typical hydrogeologic section within the study area depicting the hydrostratigraphic sequences of
interest for the study.

4.3.1 Sand-and-Gravel Aquifer
The Sand-and-Gravel Aquifer underlies the entire study area extending from land surface to the top
of the Intermediate System. It comprises sediments ranging in age from late Miocene to Holocene,

and consists of quartz sand and gravel mixed with clay, silt and shell. Differences in lithology and
hydraulic properties cause the Sand-and-Gravel Aquifer to be divided into up to three hydraulic
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zones. In descending order, they are a surficial zone, a low-permeability zone, and a main-producing
zone. The surficial zone consists of white to light gray to light-brown, fine to medium, moderately
sorted sand and extends from land surface to a depth of 20 to 60 ft. Below the surficial zone are 10-
to 65-feet thick beds of clay, sandy clay, and clayey sand. The permeability of this low-permeability
zone varies widely, but is relatively low throughout most of the area. The main-producing zone is
the most permeable part of the Sand-and-Gravel Aquifer, consisting of sand that is white to light
orange to light brown in color, medium to coarse grained with some fine gravel, and is moderately
to well sorted. This zone includes the bottom 10 to 85 ft of the aquifer. The main-producing zone
usually functions as a leaky, semi-confined (artesian) aquifer in that it is hydraulically separated from
the surficial zone by the low-permeability zone. Depending on local conditions, it is not always
possible to differentiate the aquifer into the three hydraulic zones. One or more of these zones may
be absent where the aquifer is thin.

The overall permeability of the surficial and main-producing zones varies in accordance with areal
variations in the lithology of their sediments. In Escambia, Santa Rosa, and in coastal Okaloosa and
Walton counties, these sediments consist largely of fine to medium sand with varying amounts of
clay. The grain size of the sediments of the surficial and main-producing zones is believed to
decrease to the north and east. As a result, the permeability of the aquifer is greatest in Escambia,
Santa Rosa, and coastal Okaloosa and Walton counties. Hydraulic conductivity values for the Sand-
and-Gravel Aquifer, however, have not been extensively published throughout the study area. The
only available data seems to be reported by Hayes and Barr (1983), in the immediate vicinity of Fort
Walton Beach. The five single well tests were analyzed using Jacobs’ straight-line method in the
main producing zone, consequently, the transmissivity values are considered as estimates that are
conservative. A representative specific yield value of 0.2 is given by Barr et al. (1981) for the Sand-
and-Gravel Aquifer.

The Sand-and-Gravel Aquifer will be considered as one hydrogeologic unit for this study. The land
surface constitutes the top of this unit, and is expressed by the topographic map of Figure 4.2.
Elevations are almost at sea level in the Coastal Lowlands, and rise up to 300 ft in the Western
Highlands with deep narrow ravines cut by streams and rivers. The bottom elevation of the Sand-
and-Gravel Aquifer has been interpreted by the District (Pratt et al., 1996b) on a regional scale and
lies between 200 ft and -350 ft NGVD. This surface generally dips in a west-southwesterly direction
causing the Sand-and-Gravel Aquifer to thicken to the west. In Santa Rosa and Escambia counties,
the Sand-and-Gravel Aquifer is more than 400 ft thick (Merritt, 1984) and is the primary source of
potable and industrial water, while elsewhere in the study area, it is generally thinner and less
productive, being tapped by shallow domestic wells or for recreational purposes.

The modeling study of CDM (1997) that extends over a portion of the study domain, uses a uniform
material value for the Sand-and-Gravel Aquifer with horizontal and vertical conductivities of 150
and 10 feet per day (ft/d), respectively, and a specific yield of 0.2. Other available modeling studies
in the region do not consider the Sand-and-Gravel Aquifer, focusing only on the Floridan Aquifer
system.
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4.3.2 Intermediate System

The Intermediate System is defined by material of relatively low permeability between the Sand-and-
Gravel Aquifer and the Floridan Aquifer. Geologically, the unit is comprised of the Pensacola Clay,
the Alum Bluff Group, and the Intracoastal formation of Middle to Upper Miocene age. The
Pensacola Clay is predominantly comprised of a gray to bluish-black to light brown calcareous clay;
light gray to brown, very fine to coarse clayey sand; and shell fragments. It occurs chiefly in the
southern half of Escambia and Santa Rosa counties and in coastal Okaloosa County. Beyond
Escambia and Santa Rosa counties and the western portion of Okaloosa County, the Intermediate
System also includes Miocene Coarse Clastics (Merritt, 1984). The undifferentiated Alum Bluff
Group consists of clayey quartz sand with shells and shell beds, and occurs throughout most of
northern and central Walton and Okaloosa counties. The Intracoastal Formation occurs in the
southern coastal portions of Walton and Okaloosa counties and consists of low permeability, poor
consolidated, clayey, sandy, microfossiliferous limestone.

The permeability of the Intermediate System varies across the study area due to changes in lithology
discussed above. In the eastern portion of the study area, the clayey sand and clayey limestone
lithologies cause the permeability of the Intermediate System to be relatively high compared to
further west, where the Miocene Coarse Clastics and Pensacola Clay make up the Intermediate
System. Regionally, the sediments become finer grained and exhibit lower permeabilities in the
western and southwestern portion of the study area. A core sample from a test well near Milton,
Santa Rosa County, indicated a vertical hydraulic conductivity value of 4.9x107 ft/d (Trapp et al.
1977). On the basis of geophysical and lithologic logs and aquifer test analysis, the average vertical
hydraulic conductivity of the Intermediate System confining unit ranges from 10~ to 10°° ft/d (Barr
et al., 1981, Barr et al. 1985). It averages 10™ ft/d in Okaloosa County and 10~ ft/d in Walton
County.

The elevation of the top of the Intermediate System is distinctively marked by the presence of a thin,
clayey bed of weathered shell material at the bottom of the Sand-and-Gravel Aquifer. The elevation
of the bottom of the Intermediate System lies between 100 and -1,400 ft in the study area and the
thickness of the Intermediate System ranges from 50 ft to 1,200 ft (Pratt et al., 1996b). The
Intermediate System is noted to dip and thicken toward the southwest. A combination of this, and
the lithology becoming finer grained to the west and southwest, results in the Intermediate System
being a more effective confiner in the western and southwestern portion of the study area. The clays,
if extensive under the Gulf of Mexico, probably outcrop tens of miles to the south of the shoreline.

Considering the previous modeling efforts in the region, CDM (1997) uses vertical hydraulic
conductivity values for the Intermediate System ranging from 10 ft/d to 5x10 ft/d with large
portions of the domain acquiring the lower end values. The model of Barr et al. (1981) uses leakance
values within an order of magnitude of values used by Richards’ (1993) model, with a somewhat
similar zonation pattern. Barr et al. (1981) further express the opinion that these calibrated model
values are within probable range of actual values. Richards’ (1997) study in the easternmost region
of the current study domain, uses vertical hydraulic conductivity values for the Intermediate System
which are typically one to two orders of magnitude higher than those in the central regions of the
study area.
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4.3.3 Upper Floridan Aquifer

The upper limestone of the Floridan Aquifer constitutes the principal source of water in southern
Okaloosa and Walton counties. It consists of sediments ranging from Upper Oligocene to Lower
Miocene ages, and is comprised of the Bruce Creek Formation, the Tampa Stage Limestone, and the
Chattahoochee-Chickasawhay formation geologic units. Although these carbonate rocks differ
vertically and horizontally in texture, porosity and permeability, they can be treated as a single
hydrologic unit in that their internal hydrologic dissimilarities are small compared to the
dissimilarities with overlying and underlying units. Lithologically, the Bruce Creek Formation
consists of white to gray, fine-grained, fossiliferous, moderately indurated limestone with traces of
clay and sand. The basal portion of the Bruce Creek Formation may include lenses of loose, fine-
grained to gravel sized quartz sand and blue-green clay. In coastal Walton County, the Bruce Creek
typically consists of poorly to moderately indurated, fine-grained, chalky limestone. To the west,
in Okaloosa County, the Bruce Creek consists of moderately to well indurated limestone. Poorly
indurated intervals are less common. Throughout the study area, the thickness of the formation
ranges between 110 and 150 ft. Owing to its distinctive, predominantly limestone lithology, the
Bruce Creek Formation is readily distinguishable from the overlying and underlying geologic units.
Underlying the Bruce Creek Formation are the Tampa Stage limestone and the Chickasawhay
Formation. The Tampa Stage limestones present in the Choctawhatchee Bay area are part of the
Chattahoochee Formation (Schmidt, 1984). These two formations are grouped into one
undifferentiated unit due to the difficulty of distinguishing between them, since both units consist
of white, moderately to well-indurated, fine-grained limestone, dolomitic limestone and well-
indurated, tan, sucrosic dolomite.

Ground water storage and movement in the Upper Floridan Aquifer system occurs in a combination
of pore-water flow, small solution fissures, and larger solution channels and cavities. The
transmissivity of the Upper Floridan Aquifer is highly variable ranging from 4,000 gal/d/ft (535 ft*/d)
along the central and eastern gulf coast to 180,000 gal/d/ft (24,062 ft*/d) in southeast Walton County
(Pascale, 1974). The storage coefficient ranges from 1.6x10™ to 5.6x10™. Pratt et al. (1996a)
estimate transmissivities from single well tests as well as from specific capacity data, using assumed
aquifer storativities, in southern Walton County. Transmissivity estimates from specific capacity
data range from 500 ft*/d to 3,100 ft*/d, and provide a lower end limit on the transmissivity value.
Trapp et al. (1977) estimate Upper Floridan transmissivities to range from as low as 300 ft*/d on
Santa Rosa Island to 27,000 ft*/d in south central Okaloosa County based on specific capacity tests.
Barr et al. (1985), Trapp et al. (1977) and Barr et al. (1981) report transmissivity values ranging from
1,300 to 25,000 ft*/d from seven test sites, with storage coefficients ranging from 1.6x10™ to 5.6x10"
*. Figure 4.3 shows the location of aquifer test sites for the Upper Floridan Aquifer used in this
modeling study. Table 4.2 provides additional specific capacity information for the Floridan
Aquifer.

The top elevation of the Upper Floridan Aquifer corresponds to the bottom of the Intermediate
System. The bottom elevation of the Upper Floridan Aquifer corresponds to the top of the
underlying Bucatunna Clay confining unit and ranges from -100 to -1,700 ft NGVD with a
southwesterly dip. The formation extends well into the Gulf of Mexico, where it would outcrop at
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sufficient depth. Note that the Bucatunna Clay unit is absent in the eastern regions of the study area
where the entire Floridan Aquifer system may be treated as undifferentiated. The thickness of the
Upper Floridan Aquifer system in regions where it is not undifferentiated from the lower limestone
ranges from 50 ft in northern portions of the domain to more than 400 ft near Choctawhatchee Bay
(Pratt et al., 1996b).

An investigation of previous modeling efforts in and around the study area shows a large variation
in hydraulic properties. Upper Floridan hydraulic conductivity values used by the CDM (1997)
model study range from 5 to 30 ft/d in most of their study domain, with a zone of 100 ft/d occurring
in east Santa Rosa and west Okaloosa County. Calibrated transmissivity values for the Upper
Floridan Aquifer obtained by Richards (1993) are similar in trend and magnitude to values used by
Barr et al. (1981), except in northwest Okaloosa County where Barr et al. (1981) indicate a much
higher value of 35,000 ft*/d. Barr et al. (1981) note that their modeled transmissivities are generally
higher than values obtained from aquifer tests. Both modeling efforts consider the entire Floridan
Aquifer in the analysis, in locations where the Bucatunna Clay does not exist. The hydraulic
conductivity distribution for Richards’ (1993) modeling effort, as calculated by the transmissivity
divided by the Upper Floridan Aquifer thickness (or the entire Floridan Aquifer thickness where it
is considered undifferentiated), ranges from 100 ft/d in Central Okaloosa County to less than 10 ft/d
in coastal areas and in Santa Rosa County. Richards’ (1997) study further to the east uses similar
transmissivity values to Richards (1993) along the coast, but has much higher transmissivities inland.

4.3.4 Bucatunna Clay Confining Unit

The Bucatunna Clay confining unit underlies the limestone of the Upper Floridan Aquifer and where
present, separates it hydrologically from the lower limestone of the Floridan Aquifer. Geologically,
the unit is composed of the Bucatunna Clay member of the Byram Formation and of other clastic
unconsolidated materials of low permeability of middle to lower Oligocene age, occurring between
the two principal carbonate aquifers. The Bucatunna Clay confining unit underlies all of Escambia
and Santa Rosa counties, part of Okaloosa County, and a small part of coastal Walton County. It is
thickest in south central Escambia and Santa Rosa counties, where it reaches a maximum thickness
of about 200 ft. The unit thins toward the east and pinches out in central Okaloosa County and in
coastal Walton County. The unit is present up to 15 miles north of Fort Walton Beach in Okaloosa
County and is generally present in coastal Walton County. In Destin, the Bucatunna Clay confining
unit has a thickness of about 40 ft. Further east, in Walton County (Four-Mile Point), the Bucatunna
Clay confining unit has a thickness of about 15 ft. Still further east, the Bucatunna Clay does not
exist as a continuous confining unit. In the northwest regions of the domain, the Bucatunna Clay
pinches out further north of the domain boundary for this study, in Monroe and Conecuh counties,
Alabama.

On the basis of core samples from test wells in eastern Santa Rosa County, Pascale (1976) reported
the Bucatunna Clay confining unit to consist of “waxy, dark to medium gray, very dense clay,” with
measured vertical hydraulic conductivities ranging from 2.9x10° to 2.6x107 ft/d and an effective
porosity of 13 to 14 percent. Merritt (1984) shows the locations of the wells from which core
samples were taken, to be in central Santa Rosa and southeast Santa Rosa County respectively. In
southern Okaloosa County, Barr et al. (1981) describe the Bucatunna Clay confining unit as
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consisting of “silty to sandy calcareous clay, with occasional thin beds of blue to dark gray clay.”
They report the vertical hydraulic conductivity of the unit as being higher than in Santa Rosa County
and estimate a value of approximately 1x10™ ft/d in coastal Okaloosa County. In coastal Walton
County, the Bucatunna Clay confining unit thins to the point where it is no longer an effective
confining unit. Barr (1983) reports the vertical hydraulic conductivity of the Bucatunna Clay in
Okaloosa County (where it exists) to be about 10~ ft/d along the northern portions, and about 107
ft/d along the coast, estimated from driller’s samples, geophysical logs, and data from seven aquifer
tests. Discrete measurement values and locations are not provided. Merritt (1984) noted that some
degree of confinement exists even in regions where the Bucatunna Clay pinches out in the east.

The top elevation of the Bucatunna Clay confining unit is coincident with the bottom elevation of
the Upper Floridan Aquifer limestones. The bottom elevation of the Bucatunna Clay unit ranges
from -200 ft to -1,900 ft NGVD. The unit generally dips south-southwest at about 25 feet per mile
(ft/mi) and forms an effective confining unit, restricting the upward movement of possibly saline
water from the Lower Floridan Aquifer. The Bucatunna Clay extends to the south beyond the
domain boundary and, if it extends sufficiently far, it crops out in the Gulf of Mexico.

Of model simulations in and around the study region, only the CDM (1997) study includes the
Bucatunna Clay or the Lower Floridan Aquifer. The vertical hydraulic conductivity of the
Bucatunna Clay has been divided into two zones; a value of 1x10™ ft/d is applied in south Walton
and Santa Rosa counties, and a value of 5x107 ft/d is applied elsewhere where the Bucatunna Clay
exists.

4.3.5 Lower Floridan Aquifer

Underlying the Bucatunna Clay confining unit in the western part of the study area and the
undifferentiated Chattahoochee-Chickasawhay carbonate unit in the east, are the Ocala Limestone
carbonates of Upper Eocene age that comprise the Lower Floridan Aquifer. In the western part of
the study area, the Bucatunna Clay confining unit/Ocala Limestone contact is readily apparent due
to the sharp contrast in lithology between the two units. To the east, the undifferentiated
Chattahoochee/Chickasawhay and Ocala Limestone contact is ill defined. This is due to lithologic
similarities between the two units and a lack of well control. On the whole, this portion of the
freshwater flow system is poorly understood, since the lower portion of the Floridan Aquifer system
is infrequently exploited as a source of water. What little is known is derived from oil test wells and
the occasional deep ground water exploration well. According to Clark and Schmidt (1992), the
Ocala Limestone in the study area varies from a “white to light gray, chalky, fossiliferous limestone
to a tan, sucrosic dolomite.” Traces of glauconite, clay, and sand may be present. They also describe
the unit as being abundantly fossiliferous. The contact between the Ocala Limestone and the
underlying carbonates is gradational and poorly defined.

Like the upper limestone aquifer, water in the Lower Floridan Aquifer occurs under confined
conditions and moves through the aquifer via microscopic and macroscopic solution openings.

Saline water containing chlorides in excess of 1,000 mg/L occurs within the entire thickness of the
aquifer in southern Okaloosa County. Further to the north where the Bucatunna Clay pinches out,
the aquifer contains fresh water. It is likely that moderate to high sustained yields could be obtained
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from properly constructed wells. At present, this aquifer is not used as a source of water in the study
area, and therefore potentiometric levels, conductivity, and storage data are sparse. The aquifer is,
however, used for deep well injection in Escambia and western Santa Rosa counties, and aquifer test
data is available in these locations. The injection system at Solutia, Inc. has been in operation since
1963 and Vecchioli (1995) provides the average injection rate for this system for 1990 as 1,500
gal/min. The injection system near Milton, operated by Cytec, Inc., has an average injection rate of
680 gal/min for 1990 (Vecchioli, 1994). Transmissivity estimates for the Lower Floridan Aquifer
range from 267 ft*/d at Regional Monitor Well 2 to about 5,000 ft*/d at Regional Monitor Well 1
(Merritt, 1984). Effective porosity ranges from 11 to 28 percent, and the storage coefficient varies
from 0.001 to 0.0001 (Barraclough, 1966).

The top elevation of the Lower Floridan Aquifer in the western regions of the domain coincides with
the bottom of the Bucatunna Clay confining unit. The bottom of the Lower Floridan Aquifer is not
entirely conformable due to lithologic similarity between the Ocala Limestone and the upper
carbonate unit of the Claiborne group beneath it. The elevation of the bottom of the Lower Floridan
Aquifer has been estimated by the District (Pratt et al., 1996b) and dips in a south westerly fashion
from -200 ft to -2,000 ft NGVD. The thickness of the Lower Floridan Aquifer ranges from 100 ft
in the north to more than 300 ft in the south of the domain. The lower limestone of the Floridan
Aquifer is underlain by the Claiborne confining unit of middle Eocene age which is comprised of
impermeable or low permeability beds of dense sand, shale, clay, and limestone of the Lisbon-
Tallahatta Formation. The unit inhibits upward movement of water from underlying units and also
delineates the base of the subsurface flow regime for this study. The southern outcrop of the Lower
Floridan system in the Gulf of Mexico occurs between 50 to 80 miles south of the coastline if the
unit continues with the same degree of dip (Merritt, 1984).

Of model simulations in and around the study region, only the CDM (1997) study includes the Lower
Floridan Aquifer as a separate unit. They use a uniform horizontal hydraulic conductivity value of
75 ft/d for the Lower Floridan Aquifer model layer.

4.3.6 Sub-Floridan System

The Sub-Floridan System consists of low-permeability sediments that form the base of the Floridan
Aquifer system. The Sub-Floridan System is middle Eocene in age and includes the Lisbon and
Tallahatta formations. It functions primarily as a confining unit and hydraulically separates the
Floridan Aquifer system from the underlying sediments. The elevation of the top of the unit ranges
from -200 ft NGVD in the northeast part of the study area to -2,400 ft NGVD in the southwest.
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44  POTENTIOMETRIC DATA

Potentiometric data has been collected and compiled for the various layers in the system, to varying
degrees. Most data is available for the Upper Floridan Aquifer, followed by the Sand-and-Gravel
Aquifer, with little information available for the Lower Floridan Aquifer. Of interest to this study
are the average potentiometric levels for pre-development and May 1990 conditions, for steady state
simulation of the Floridan flow system.

4.4.1 Potentiometric Data on Sand-and-Gravel Aquifer

Hayes and Barr (1983) indicate that historical data on the water table in the surficial zone of the
Sand-and-Gravel Aquifer is sparse, but is generally a subdued replica of the topography, being a few
feet below land surface in most of the Coastal Lowlands, and 25 to 50 ft below land surface in much
of the Western Highlands. These water levels are generally higher than those of the main producing
zone of the Sand-and-Gravel Aquifer and are believed to be fairly consistent through pre-
development times, except for possibly in central Escambia County, where this aquifer is used as a
source of water.

4.4.2 Potentiometric Data on Upper Floridan Aquifer

The potentiometric surface of the Upper Floridan Aquifer within the study area has been declining
steadily due to increased water supply from this aquifer. Before 1941, only a few wells tapped the
Floridan Aquifer in the area of investigation. Figure 4.4 shows the estimated pre-development
potentiometric surface of the Upper Floridan Aquifer (Maslia and Hayes, 1988), the earliest year for
which sufficient control existed to produce a potentiometric map. This potentiometric surface
configuration may be taken as pre-development conditions. Figure 4.5 shows the approximate
configuration of the potentiometric surface of the Upper Floridan Aquifer for May 1990 conditions.
The potentiometric surface is noted to have declined by as much as 160 ft on an average, in 50 years
of pumping with an additional 20 to 30 ft decline during periods of peak demand (Barr et al., 1985).

4.4.3 Potentiometric Data on Lower Floridan Aquifer

Information on the Lower Floridan Aquifer in the study area is relatively sparse. Barr et al. (1985)
report on four test wells in Southern Okaloosa and Walton counties, and note that at Fort Walton
Beach (Beal Cemetary), the Lower Floridan Aquifer potentiometric level is approximately five ft
ASL, while water levels of the Upper Floridan Aquifer are approximately 44-67 ft below sea level.
At other test sites, water levels were only one to five ft above those of the Upper Floridan Aquifer.

4.5 RECHARGE AND DISCHARGE

Rainfall precipitation is the primary source of recharge to the area. Average rainfall in the study area
is approximately 60 inches per year (in/yr), with 15 to 18 in/yr recharging the Sand-and-Gravel
Aquifer and the rest being lost to evapotranspiration and surface runoff. Pascale (1974) reports an
average rainfall for Walton County of 65 in/yr. Hayes and Barr (1983) report a mean average rainfall
of 62 in/yr for southern Okaloosa and Walton counties with highest precipitation occurring during
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late spring or early summer. Trapp et al. (1977) report an average of 64 in/yr for Okaloosa County
and adjacent areas, and note that it may vary substantially from year to year and from station to
station. Barr et al. (1985) present a range of 31 in/yr in 1954 to 95 in/yr in 1975. Grubbs (1995)
presents investigations on ground water recharge in Escambia and Santa Rosa counties. Precipitation
averages 60 to 64 in/yr and potential evapotranspiration ranges from 42 to 46 in/yr. Recharge to the
Sand-and-Gravel Aquifer approximates 15 to 18 in/yr and is highest in southern Santa Rosa County
near or on Eglin Air Force Base. Barr et al. (1981) use 35 in/yr of evapotranspiration as a reasonable
number in their study, giving an average of 18 in/yr recharge to the subsurface for their modeling
study. Bush and Johnston also show evapotranspiration in the area to be about 35 in/yr.

Average runoff is between one to seven in/yr in the Coastal Lowlands, and varies from 20 to 35 in/yr
in the Western Highlands region (Bush and Johnston, 1988). Rainfall is also areally variable in the
region and, therefore, a net recharge to the system is difficult to estimate at different locations within
the study area. Vecchioli et al. (1990) performed a study determining net ground water recharge
using baseflow analysis, which indicated that average recharge to the Sand-and-Gravel Aquifer was
over 10 in/yr throughout Okaloosa County, except for stream-valley floors, swamps and coastal
wetland areas, which are discharge locations. Recharge to the Upper Floridan Aquifer occurs from
the Sand-and-Gravel Aquifer in Florida, across the Intermediate System confining unit. This recharge
is less than five in/yr everywhere in Okaloosa County (Vecchioli et al., 1990). The Upper Floridan
Aquifer was discharging in the southern coastal regions during pre-development conditions, while
it is a recharging system for 1990 conditions due to extensive lowering of its potentiometric levels
as a result of development. North of the border in Alabama, the Floridan Aquifer crops to the
surface where it is directly recharged by rainfall. The northern boundary of the study area defines
the limit of the Floridan Aquifer, where water levels are noted to be fairly stable. No water enters
the Floridan Aquifer system laterally, from sediments further north of this boundary.

Water that recharges the aquifers in the northern portion of the study area generally moves south,
discharging to streams and rivers, and into the Gulf of Mexico. Trapp et al. (1977) report that about
2,500 million gallons per day (Mgal/d) of water discharges into the bays and the Gulf of Mexico via
streams and rivers in and around Okaloosa County. This amount does not fluctuate extensively
during drought periods or even seasonally, indicating that only a small portion of it is surface runoff.
They estimated that 75 to 96 percent of total streamflow is base runoff, mainly from the Sand-and-
Gravel Aquifer. Vecchioli et al. (1990) determine base flows for streams and rivers in Okaloosa
County to range from 14.3 in/yr to 50.7 in/yr. Trapp et al. (1977), Barr et al. (1985), Vecchioli et
al. (1990), and Barr et al. (1981) report streamflows for several streams and rivers in the study area.
Most streams and rivers in the study area are in close communication hydraulically, with the Sand-
and-Gravel Aquifer. Portions of the Choctawhatchee River and Holmes Creek are also in close
hydraulic communication with the Floridan Aquifer. Floridan Aquifer discharge to the
Choctawhatchee River ranges from about 150 cubic feet per second (cfs) to 250 cfs.

Ground water is the principal source of water in the study area. In 1941, only a few wells tapped
these water resources. Since then, the demand for potable water has been continually increasing.
Barr et al. (1985) estimated 10.9 Mgal/d withdrawals in January and 19 Mgal/d in June, for Okaloosa
and Walton counties for the year 1978. Vecchioli et al. (1990) estimate average Upper Floridan
Aquifer withdrawals of 26.14 Mgal/d, and Sand-and-Gravel Aquifer withdrawals of 1.53 Mgal/d in
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1985 for Okaloosa County. Barr et al. (1981) report that 95 percent of ground water withdrawals
in south Okaloosa County occur via nine separate water supply systems. Pumping estimates increase
from 1.51 Mgal/d in 1940, to 11.8 Mgal/d in 1968, to 15.1 Mgal/d in 1978. Richards (1993) has
assimilated most of the pumping data in the study area for 1990 average daily rate withdrawals.
These data have been augmented (NWFWMD, 1999) to cover the current study area and are
presented in Table 4.3. Figure 4.6 shows the locations of these pumping wells.
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5.0 GROUND WATER FLOW MODEL CALIBRATION
5.1 CONCEPTUAL MODELING FRAMEWORK

The relevant information presented in Chapter 4 is used to develop an initial understanding of the
flow behavior of the system under study. The objectives of the study and the scale of the problem
are considered while compiling and interpreting data. Conceptualization of the system proceeds
accordingly.

The system under study is a multi-layered aquifer system. The domain of interest includes the Sand-
and-Gravel Aquifer, the Intermediate System, the Upper Floridan Aquifer, the Bucatunna Clay, and
the Lower Floridan Aquifer. The stratigraphy of these systems has been interpreted by Pratt et al.
(1996b) on a sub-regional scale. A fully three-dimensional conceptualization is considered for each
of the aquifer units, including the confining units (i.e., the Intermediate System and the Bucatunna
Clay). The Sand-and-Gravel Aquifer is an unconfined system, while the remaining units are
considered to be fully confined since the Intermediate System does not de-saturate and cannot allow
air to enter the underlying aquifers. The base of the Lower Floridan Aquifer is considered as the
bottom boundary of the domain and is conceptualized as a no-flow condition across it, due to the
impermeable nature of the underlying Claiborne sediments.

Hydrogeologic properties for these units have been assimilated from various aquifer tests. Sand-and-
Gravel Aquifer properties are discussed in Section 4.3.1. A uniform value of its hydraulic properties
will be used in the model for calibration purposes, since this unit has only sparse characterization
and its pumping is less well defined and not used in the model. Hence, the Sand-and-Gravel Aquifer
is treated as a mechanism for transmitting recharge water to the underlying units, its presence in the
model providing a reasonableness check on recharge fluxes to the system. Section 4.3.2 discusses
leakance information for the Intermediate System, with vertical hydraulic conductivity of the
Intermediate System decreasing from east to west. Hydraulic properties for the Upper Floridan
Aquifer are discussed in Section 4.3.3 and are highly variable throughout the domain of study.
Aquifer tests in southern Okaloosa and Walton counties, and in Santa Rosa County provide vertical
hydraulic conductivity information for the Bucatunna Clay confining unit discussed in Section 4.3.4.
The Bucatunna Clay confining unit exists in the western regions of the study area, but is absent in
the eastern portions of the domain, where the Floridan Aquifer may be considered as
undifferentiated. Finally, hydrogeologic information available for the Lower Floridan Aquifer is
discussed in Section 4.3.5.

Fresh water recharges the Sand-and-Gravel Aquifer and the Floridan Aquifer system in the northern
regions of the domain and generally flows southward within the Floridan Aquifer system as depicted
by the potentiometric contours in Figures 4.4 and 4.5. Floridan Aquifer recharge is highest near, and
north of the Florida-Alabama state line, where the Floridan Aquifer crops up to the surface.

Recharge to the Floridan Aquifer occurs in regions further to the south for 1990 conditions than for
pre-development conditions, induced by pumping the Upper Floridan system. The Sand-and-Gravel
Aquifer accepts recharge in most of the upland regions of the domain, averaging 18 in/yr. Spatial
variation of this recharge is not known, however, the Sand-and-Gravel Aquifer water levels are
known to be within a few feet of land surface. This information can be used to reject additional
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recharge when water levels in the Sand-and-Gravel Aquifer exceed land surface. Discharge to the
surface occurs in streams, rivers, bays, and the Gulf of Mexico. The surface boundary condition in
these discharge areas, therefore, is conceptualized as a constant head boundary, with a head value
of zero in the bays and the Gulf of Mexico. The Sand-and-Gravel Aquifer discharges to rivers and
streams under prescribed river stage conditions, via leakage across the river bed sediments. A
portion of the Choctawhatchee River and Holmes Creek are in direct communication with the
Floridan Aquifer. These regions within the Floridan Aquifer are also connected to the river with
Floridan Aquifer discharge occurring across the river bed sediments under prescribed river stage
conditions.

Lateral boundaries of the domain are selected to accommodate the objectives of this study. The
northern boundary lies along the updip limit of the Floridan Aquifer in Alabama, to form a natural
no-flow boundary where the Floridan Aquifer system pinches out. In western portions of the
domain, however, the Lower Floridan Aquifer is still confined along the northern boundary, but
extends only a little further outside the model domain before it too outcrops and pinches out. The
east and west boundaries are located sufficiently beyond the anticipated radius of influence of the
major pumping centers, since natural boundaries do not exist in the vicinity. These boundaries are
further treated as head-dependent flux boundary conditions for all aquifers under study, to
additionally reduce boundary influences on pumping in the vicinity. However, the Perdido River
acts as a natural boundary for the Sand-and-Gravel Aquifer’s western model boundary, therefore the
region further west of the Perdido River in the Sand-and-Gravel Aquifer is of no consequence to the
analysis. The southern boundary of the domain lies approximately 21 miles into the Gulf of Mexico
from the mouth of Choctawhatchee Bay, to provide the ability to examine saltwater intrusion in
future modeling efforts. Since a natural boundary does not exist nearby, the southern lateral
boundary is also treated as a head-dependent flux boundary condition for the Floridan Aquifer
system to reduce boundary influences on pumping in the Fort Walton Beach area and other coastal
areas. Southern boundary heads in the lower hydrogeologic units increase with depth to reflect the
additional weight due to the higher density of seawater as compared to fresh water. Appropriate
pumping rates and locations are also included in the boundary conditions for 1990 pumping
conditions. Figure 4.6 shows the well locations and Table 4.3 shows the associated pumping rates
from within the Floridan Aquifer system.

This initial conceptualization of the system is incorporated into a numerical model. Model
calibration is then performed by systematically adjusting parameter values within reasonable bounds
to minimize errors between measured and model predicted head values within the domain. The
model is calibrated in steady state to 1990 conditions to provide a realization of hydraulic
conductivity distribution for all hydrogeologic units. Seasonal fluctuations and their associated
transients are therefore neglected in the calibration process. The model is then verified by simulating
pre-development conditions. The calibrated, verified model is then considered to represent field
conditions and a sensitivity analysis is used to determine effects of model parameters on simulated
results. This model may then be used for further investigations of the effects of different water
demand conditions, as well as a baseline for localized, more detailed investigations.
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5.2  NUMERICAL MODELING ASSUMPTIONS

The conceptual model discussed in Section 5.1 is implemented into a numerical framework for
analysis. The numerical model is discretized into five layers, each layer representing one
hydrogeologic unit. The first layer represents the Sand-and-Gravel Aquifer, which is unconfined.
Therefore, the top and bottom elevations along with hydraulic conductivities will be required for this
model layer to express its unconfined condition. The second layer represents the Intermediate
System, the third layer represents the Upper Floridan Aquifer, the fourth layer represents the
Bucatunna Clay where it exists, and the fifth layer represents the Lower Floridan Aquifer. Layers
2 through 5 are treated as confined units, therefore, only transmissivity values of these units are
required for their numerical expression. Since each unit is not further sub-divided into model layers,
it is assumed that vertical flow within a unit occurs instantaneously, with no capability of
discriminating vertical head gradients within a unit. Horizontal flow occurs within each aquifer unit
between horizontally discretized grid points, and vertical flow occurs between the aquifer units.

The numerical model further assumes that Darcy’s Law can express flow within the sub-surface.
Thermal or concentration influences are neglected. Furthermore, a steady-state analysis is performed
for pre- and post-development conditions; therefore, storage effects are also neglected along with
their associated transient fluctuations.  Also, basic physical processes (e.g., rainfall,
evapotranspiration, topography and land use) and aquifer parameters that control flow in the
subsurface (e.g., transmissivities, leakance and Sand-and-Gravel Aquifer conductivities) are assumed
to be time invariant. Hence, the difference between pre- and post-development conditions is only
in the applied pumping stresses. The pumping stress applied to a grid cell is assumed to withdraw
water over the entire thickness of the cell, and all pumping wells within a grid cell extract water
uniformly from the whole cell volume. Finally, for a well pumping from multiple layers, the total
extraction rate is divided among model layers according to the ratio of their transmissivities.

53 FLOW MODEL CODE

The ground water flow code MODFLOW (McDonald and Harbaugh, 1988) is selected to develop
the sub-regional flow model for the study area. MODFLOW solves for the steady state or transient
flow of water in the subsurface subject to various boundary conditions, and satisfies all the basic

requirements for this study including:

e MODFLOW can simulate fully three-dimensional conditions as conceptualized for the system
under study.

e MODFLOW is capable of simulating confined and unconfined multi-layer systems with different
units being either confined or unconfined.

e MODFLOW incorporates sinks for pumping conditions needed for post-development analysis.

e MODFLOW incorporates areal recharge boundaries necessary for applying a net recharge to the
modeled system.
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e MODFLOW incorporates river boundary conditions needed for implementing the various surface
water features of the system. The river boundary conditions of MODFLOW are flexible in
allowing river connections to multiple aquifer units, as needed to express the connection of
Choctawhatchee River and Holmes Creek to the Floridan Aquifer system.

e MODFLOW incorporates general head boundary conditions (head-dependent flux conditions)
to allow for expression of boundaries distant from pumping centers or other features of interest,
which may otherwise be affected by nearby boundary conditions.

e MODFLOW incorporates drain boundary conditions needed for expressing the reduced recharge
that would occur when water levels in the Sand-and-Gravel Aquifer reach the land surface.

54 MODEL DOMAIN AND FINITE-DIFFERENCE GRID DESIGN

Figure 5.1 shows the domain of simulation and the areal grid used for this study. The domain
encompasses Escambia, Santa Rosa, Okaloosa, and Walton counties and parts of Bay, Washington,
and Holmes counties in Florida, and extends north into parts of Escambia, Covington, and Geneva
counties in Alabama up to the updip limit of the Floridan Aquifer. The grid is rectangular in plan
section with each layer containing 175 columns and 114 rows of grid blocks, totaling 19,950 nodes
per layer, with a maximum grid block size of 13,123 ft and a minimum grid block size of 2,297 ft
in regions of interest in the center of the study area.

One model layer is used to represent each of the five hydrostratigraphic units. The finite-difference
grid blocks are distorted in the vertical dimension to conform to the stratigraphy of the system. The
elevation of the top of model layer 1 representing land surface is shown in Figure 5.2. The thickness
of model layer 1, representing the Sand-and-Gravel Aquifer is shown in Figure 5.3. The elevation
of the bottom of model layer 1 is shown in Figure 5.4. This surface also represents the top of model
layer 2. The thickness of model layer 2, representing the Intermediate System is shown in Figure 5.5.
The elevation of the bottom of model layer 2 is shown in Figure 5.6. This surface also represents
the top of model layer 3. The thickness of model layer 3, representing the Upper Floridan Aquifer
and the upper portion of the undifferentiated Floridan Aquifer system to the east, is shown in Figure
5.7. The elevation of the bottom of model layer 3 is shown in Figure 5.8. This surface also
represents the top of model layer 4. The thickness of model layer 4, representing the Bucatunna Clay
confining unit where it exists, and the middle portion of the undifferentiated Floridan Aquifer system
further to the east, is shown in Figure 5.9. The elevation of the bottom of model layer 4 is shown
in Figure 5.10. This surface also represents the top of model layer 5. The thickness of model layer
5, representing the Lower Floridan Aquifer and the lower portion of the undifferentiated Floridan
Aquifer system, is shown in Figure 5.11. The elevation of the bottom of model layer 5 is shown in
Figure 5.12. This surface also represents the top of the Sub-Floridan System.

The three-dimensional finite-difference grid generated for this simulation study requires input for
only the elevations of the top and bottom of model layer 1, which is unconfined. The other model
layers are treated as confined and their tops, bottoms and thicknesses are not required for the
simulation, which directly uses transmissivity values for these layers. The five model layers, with
19,950 grid blocks per layer, totals 99,750 grid blocks in the finite-difference grid.
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5.5 BOUNDARY CONDITIONS

Boundary conditions on the top model layer include recharge on shoreward regions of the domain,
constant head conditions in the bays and the Gulf of Mexico, river conditions along primary rivers
and streams including the Perdido River along the western boundary, and general head boundary
conditions along the eastern model domain boundary. Figure 5.13 shows regions of recharge and
of prescribed head boundary conditions along the top model layer. A constant value of 20 in/yr
(NWFWMD, 1999) is used for recharge to the system, and prescribed head conditions in the bays
and the Gulf of Mexico receive a head value of zero representing mean sea level. Drain boundary
conditions are also applied on nodes with prescribed recharge, with drain elevations being equal to
the land surface elevation to shed the excess recharge which would otherwise allow for water levels
in the Sand-and-Gravel Aquifer to exceed land surface. This method is used to determine the spatial
variation of recharge to the ground water system. Grid blocks that contain major streams of interest
in the study area, which are in communication with the Sand-and-Gravel Aquifer (model layer 1) are
identified on Figure 5.14. The Perdido River forms the western boundary of the domain of interest,
and this river behaves as a hydraulic divide for the Sand-and-Gravel Aquifer. Therefore, only the
lateral eastern model boundary is provided with a general-head (head-dependent-flux) boundary
(GHB) condition for the Sand-and-Gravel Aquifer in model layer 1.

Model Layer 2 represents the Intermediate Confining Unit, and is provided a no-flow condition along
its lateral boundaries since its contribution is negligible compared to lateral inflow from the aquifer
units above and below. No special treatment is required for no-flow conditions in MODFLOW.

Model Layers 3, 4, and 5 are provided GHB conditions along the east and west lateral boundaries
and along the south. No flow conditions prevail in the north at the updip limit of the Floridan
Aquifer system for model layers 3, 4 and 5. Head values for the GHB condition along the southern
boundary are increased with depth to reflect the density of seawater since it is assumed that saline
water exists in all aquifers far out into the Gulf of Mexico. Further, model layer 3 is in
communication with portions of the Choctawhatchee River and Holmes Creek, and a river boundary
condition is applied along these nodes which are shown in Figure 5.15.

The bottom boundary of the modeled system is a no-flow condition representing the extremely low
conductivities of the Sub-Floridan System.

Withdrawals from, and injection into the Floridan Aquifer system for the calibration simulation of
1990 conditions are applied using MODFLOW?’s well boundary conditions which treat the wells as
point sources or sinks which are uniformly applied over the entire volume of the node. Well
locations are as depicted in Figure 4.6, with pumping values of Table 4.3. This boundary package
is not needed for the unstressed pre-development conditions. All other boundary conditions remain
the same for pre- and post-development conditions.
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5.6 MATERIAL PROPERTIES

Material properties required for the MODFLOW simulation depend on the aquifer conditions.
Model layer 1, representing the Sand-and-Gravel Aquifer is an unconfined system and requires input
for its horizontal hydraulic conductivity and its top and bottom elevations. The horizontal hydraulic
conductivity of model layer 1 is treated as homogeneous, with one average value representing the
whole aquifer, as determined by the calibration. MODFLOW?’s horizontal conductivity averaging
option 33 is used to calculate interblock flow between rows and columns of grid blocks. Thus, the
unconfined transmissivity between grid blocks uses a logarithmic average of the horizontal hydraulic
conductivity times the arithmetic average saturated thickness of the grid blocks. The vertical
hydraulic conductivity of the Sand-and-Gravel Aquifer is also treated as homogeneous, with a
horizontal to vertical anisotropy ratio of 10:1. The vertical leakance of model layer 1 as required by
MODFLOW, is calculated as the weighted harmonic average vertical hydraulic conductivity between
the Sand-and-Gravel Aquifer, and the Intermediate System, divided by half the sum of their
thicknesses.

Model layer 2 represents the Intermediate System, which is treated as a confined system. Its
hydraulic conductivity value is therefore multiplied by the thickness to provide a transmissivity,
which is required by MODFLOW. The horizontal hydraulic conductivity is treated as variable
within the Intermediate System. MODFLOW’s transmissivity averaging option 20 is used to
calculate interblock flow between rows and columns of grid blocks. Thus, the confined
transmissivity between grid blocks uses a logarithmic average of the transmissivities of the
individual grid blocks. The vertical hydraulic conductivity of the Intermediate System is also treated
as heterogeneous and follows the trends of the horizontal hydraulic conductivity, with a constant
anisotropy ratio of 35:1. This vertical hydraulic conductivity is required for the vertical leakance
calculation of model layer 1 as discussed above, as well as for the vertical leakance calculation of
model layer 2 representing flow between the Intermediate System and the upper layer of the Floridan
Aquifer. The vertical leakance of model layer 2 as required by MODFLOW, is calculated as the
weighted harmonic average vertical hydraulic conductivity between the Intermediate System and the
Upper Floridan Aquifer, divided by half the sum of the thicknesses between model layer 2 and model
layer 3.

Model layer 3 represents the Upper Floridan Aquifer and the upper portion of the undifferentiated
Floridan Aquifer system and is treated as confined. Its hydraulic conductivity value is therefore
multiplied by the thickness to provide a transmissivity value, which is required by MODFLOW. The
horizontal hydraulic conductivity is treated as variable within model layer 3. MODFLOW'’s
transmissivity averaging option 20 is used to calculate interblock flow between rows and columns
of grid blocks for this layer. Thus, the confined transmissivity between grid blocks uses a
logarithmic average of the transmissivities of the individual grid blocks. The vertical hydraulic
conductivity of the Upper Floridan Aquifer system is also treated as heterogeneous and follows the
trends of the horizontal hydraulic conductivity, with a constant anisotropy ratio of 35:1. This vertical
hydraulic conductivity is required for the vertical leakance calculation of model layer 2 as discussed
above, as well as for the vertical leakance calculation of model layer 3 representing flow between
the Upper Floridan Aquifer and the Bucatunna Clay. This applies in regions where the Bucatunna
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Clay is present, and between the upper portion of the undifferentiated Floridan Aquifer system and
the middle portion of the undifferentiated Floridan Aquifer system in eastern regions of the domain.
The vertical leakance of model layer 3 is calculated as the weighted harmonic average vertical
hydraulic conductivity between the Upper Floridan Aquifer and the Bucatunna Clay (or between the
upper portion of the undifferentiated Floridan Aquifer and the middle portion of the undifferentiated
Floridan Aquifer in regions where the Bucatunna Clay is absent), divided by half the sum of the
thicknesses between model layer 3 and model layer 4.

Model layer 4 represents the Bucatunna Clay confining unit and the middle portion of the
undifferentiated Floridan Aquifer system in eastern regions of the domain where the Bucatunna Clay
is absent, and is treated as confined. Its hydraulic conductivity value is therefore multiplied by the
thickness to provide a transmissivity value, which is required by MODFLOW. The horizontal
hydraulic conductivity is treated as variable within model layer 4. MODFLOW?’s transmissivity
averaging option 20 is used to calculate interblock flow between rows and columns of grid blocks
for this layer. Thus, the confined transmissivity between grid blocks uses a logarithmic average of
the transmissivities of the individual grid blocks. The vertical hydraulic conductivity of the
Bucatunna Clay and the middle portion of the undifferentiated Floridan Aquifer system is also
treated as heterogeneous and follows the trends of the horizontal hydraulic conductivity, with a
constant anisotropy ratio of 35:1. This vertical hydraulic conductivity is required for the vertical
leakance calculation of model layer 3 as discussed above, as well as for the vertical leakance
calculation of model layer 4 representing flow between the Bucatunna Clay and the Lower Floridan
Aquifer in regions where the Bucatunna Clay is present, and between the middle and lower portions
of the undifferentiated Floridan Aquifer system in eastern regions of the domain. The vertical
leakance of model layer 4 as required by MODFLOW, is calculated as the weighted harmonic
average vertical hydraulic conductivity between the Upper Floridan Aquifer and the Bucatunna Clay
(or between the upper portion of the undifferentiated Floridan Aquifer and the middle portion of the
undifferentiated Floridan Aquifer in regions where the Bucatunna Clay is absent), divided by half
the sum of the thicknesses between model layer 4 and model layer 5.

Model layer 5 represents the Lower Floridan Aquifer and the lower portion of the undifferentiated
Floridan Aquifer system in eastern regions of the domain, and is treated as confined. Its hydraulic
conductivity value is therefore multiplied by the thickness to provide a transmissivity value, which
is required by MODFLOW. The horizontal hydraulic conductivity is treated as heterogeneous within
model layer 5. MODFLOW: s transmissivity averaging option 20 is used to calculate interblock flow
between rows and columns of grid blocks for this layer. Thus, the confined transmissivity between
grid blocks uses a logarithmic average of the transmissivities of the individual grid blocks. Model
layer 5 is the bottommost layer in the simulation, and does not require input for leakance during a
MODFLOW simulation. Its vertical hydraulic conductivity is however used to calculate leakance
of model layer 4. A constant anisotropy ratio of 35:1 is applied to the lower portions of the Floridan
Aquifer for computation of this leakance.

Estimates of these parameter values are used in early model simulations, which are then
systematically revised during calibration, to provide a calibrated model of the system, which
represents field conditions. The physical parameter values obtained through model calibration are
“effective” or “average” parameters over a grid block. The degree of local variation that may be
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accounted for is necessarily restricted by the grid block size. Furthermore, model calibrated
parameter values may not be unique, with different combinations of values providing similar
potentiometric surface distributions and fluxes at locations where these values are known. The goal
of this modeling study was to obtain realistic calibration parameters that conform to the overall
hydrogeologic framework, and that lie within a reasonable range that could be verified using field
observations.

5.7 CALIBRATION PROCEDURE

The conceptual model is converted to a numerical representation of the system for simulation using
the ground water flow code MODFLOW. Calibration simulations are then performed by
systematically varying material parameters within reasonable ranges and investigating the effects of
these changes on the results. Calibration simulations also indicate misrepresentations in the
conceptualization, which are also adjusted during the calibration process. The water level
distributions in all aquifers are checked for consistency with known or estimated field values and
trends. Errors between measured and simulated heads are also checked to minimize the residuals
to within the prescribed calibration targets. Finally, each calibration simulation is checked for biases
in the results that may be present, even though the residuals are small.

5.8 CALIBRATION TARGETS

Calibration targets for 1990 conditions are the potentiometric surface of the Upper Floridan Aquifer
depicted in Figure 4.5. Further, water levels in test wells in the Upper Floridan Aquifer, the Lower
Floridan Aquifer, and the undifferentiated Floridan Aquifer system are used to calculate residuals
between measured and simulated values which determine the goodness of fit of the simulation to
known data points. The objective for the calibration, then, is to minimize the errors between
measured and calculated water levels at observation locations and also minimize the spatial bias in
the errors. Model parameters will be varied within the range of field values during the calibration
procedure to produce the calibrated model, which will then be verified by comparing simulation
results for pre-development water levels, with the estimated pre-development conditions shown in
Figure 4.4. May 1990 potentiometric surface conditions were used for calibration purposes since
they are the most complete set of potentiometric data available and are considered consistent with
the pumping rates in Table 4.3 (NWFWMD, 1999).

59 CALIBRATION RESULTS

The calibration procedure discussed in Section 5.7 was used to provide a calibrated model for the
flow system underlying the domain of study. The calibrated horizontal hydraulic conductivity value
for the Sand-and-Gravel Aquifer is a uniform 35 ft/d. The underlying Intermediate System acts as
a confining unit to the Floridan Aquifer system beneath it, with calibrated vertical hydraulic
conductivity values as shown in Figure 5.16. The calibrated transmissivity values of model layer 3
representing the Upper Floridan Aquifer and the upper portion of the undifferentiated Floridan
Aquifer system are shown in Figure 5.17. Model layer 4 represents the Bucatunna Clay confining
unit, which acts as a confining unit for the Lower Floridan Aquifer, as well as the middle portion of
the undifferentiated Floridan Aquifer system. Figure 5.18 shows the vertical hydraulic conductivity
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distribution of the Bucatunna Clay confining unit, and Figure 5.19 shows the transmissivity of the
middle portion of the undifferentiated Floridan Aquifer system where the Bucatunna Clay is absent
in model layer 4. Finally, Figure 5.20 shows the calibrated transmissivity values of model layer 5
representing the Lower Floridan Aquifer and the lower portion of the undifferentiated Floridan
Aquifer system. Further, Figure 5.21 shows the combined calibrated transmissivities of model layers
3,4 and 5, to represent the transmissivity of the entire Floridan Aquifer system. East of where the
Bucatunna Clay pinches out, this transmissivity represents the transmissivity of the undifferentiated
system. All parameter values are noted to be within the range of field observed values for each
aquifer unit within the system.

The average potentiometric surface simulated by the calibrated flow model for 1990 pumping
conditions is shown in Figure 5.22 for model layer 1, Figure 5.23 for model layer 3, and Figure 5.24
for model layer 5. Figure 5.22 shows the Sand-and-Gravel Aquifer water levels to generally follow
the topographic surface as has been observed within the domain. Rivers and streams also have a
control on the Sand-and-Gravel Aquifer heads, with heads dropping and seepage faces developing
in their vicinity. Upon comparison of Figure 5.23 with the observed 1990 Floridan Aquifer
potentiometric surface of Figure 4.5, it is again noted that the simulation represents the field
conditions fairly well. Water levels in the Upper Floridan Aquifer model layer are as low as -97 ft
NGVD in the center of depression of the high pumping regions around Choctawhatchee Bay and are
as high as 280 ft in the upland regions near the northern edge of the domain. Figure 5.24 shows that
there is considerable mounding of water levels in the Lower Floridan Aquifer near the injection wells
of Solutia and Cytec (253 ft of water level elevation at its peak), which dissipates away from this
region. Table 5.1 shows the observed versus simulated ground water elevations for 1990 pumping
conditions along with the residuals and relevant statistics of calibration. The mean residual
(simulated minus measured water levels) is 2.46 ft showing a negligible bias in calibration, with a
root-mean-squared (RMS) residual of 12.56 ft, and a worst error of 57.4 ft. These errors, though
considerably large, are acceptable for the simulation since it is noted that water levels in nearby
observation wells can vary by large amounts and the model cannot capture this feature. Figures 5.25
and 5.26 show the water level residuals at measurement points for model layers 3 and 5 respectively,
for 1990 conditions. The residuals are unbiased spatially, with random occurrence of positive and
negative residuals, except for in central and northern Okaloosa and Walton counties, where a slight
positive bias is noted. The highest residual of about 57 ft is noted to occur near West Bay, in Bay
County. This location is close to the southern and eastern model boundary, which may influence the
value even with the general head boundary conditions provided in the model. Figure 5.27 shows a
scatter plot of simulated versus measured heads, which shows that the points lie close to the
regression line with a small scatter, for the whole range of measured head values, again indicating
that the calibration was unbiased. Figure 5.28 shows the frequency distribution of ground water
residuals. It is noted that there is an even distribution of residuals about the zero value again
indicating an unbiased calibration.

The water budgets for the calibrated model, of 1990 pumping conditions, is shown in Table 5.2.

The recharge of 20 in/yr, applied to a model area of 7,635.3 square miles provides the major input
of water to the system totaling 7,270.8 Mgal/d. A significant portion of this water is rejected
recharge via the drain boundary condition of MODFLOW, which is applied along every top-layer
node that is not a river node. This rejected recharge prevents water levels in the Sand-and-Gravel
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Aquifer from exceeding land surface, and totals 2,343.5 Mgal/d. Other sources of water to the
system include the injection wells totaling 3 Mgal/d, lateral general head boundaries totaling 23.6
Mgal/d, and water induced from the constant head boundaries in the bays and the Gulf of Mexico
totaling 5.4 Mgal/d. The rivers in model layer 1 reject recharge as well as drain the Sand-and-Gravel
Aquifer, which removes 4,208.8 Mgal/d from the system. The Floridan Aquifer drains directly into
the Choctawhatchee River and Holmes Creek in the amount of 331.6 Mgal/d for this simulation, as
calculated from river fluxes in model layer 3. Other outflux of water occurs along the constant head
boundaries within bays and the Gulf of Mexico totaling 288.2 Mgal/d, via wells totaling 42.3
Mgal/d, and via lateral general head boundaries totaling 88.4 Mgal/d. A negligible mass balance
error was noted for the simulation.

5.10  PRE-DEVELOPMENT VERIFICATION RESULTS

The calibrated model of the domain was verified by examining its performance for pre-development
conditions. A steady state simulation was therefore performed using the calibrated model, without
any pumping in the domain. Material parameter values and other boundary conditions were kept the
same as for the calibrated model (NWFWMD, 1999). Figures 5.29, 5.30 and 5.31 show the
simulated pre-development water levels in model layers 1, 3 and 5 respectively. The pre-
development water levels in the Floridan Aquifer, as shown in Figure 4.4 are in close comparison
to water levels representing the Upper Floridan Aquifer shown in Figure 5.30. Further, the simulated
hydraulic heads in the Lower Floridan Aquifer are almost the same as those of the Upper Floridan
Aquifer in and east of Okaloosa County, as is believed for pre-development conditions. The model
is therefore noted to represent field conditions during stressed and unstressed periods. The
differences in water levels between pre- and post-development conditions represent the drawdowns
in the system from pre-development times. The simulated drawdowns from pre-development times
are shown in Figures 5.32, 5.33 and 5.34 for model layers 1, 3 and 5 respectively. Drawdowns in
model layer 1 due to pumping are negligible, and induced recharge makes up for the water deficiency
which was otherwise shed from the system as runoff via the drain boundary conditions. Model layer
3 is noted to have pumping related drawdowns as high as 140 ft around the pumping centers off
Choctawhatchee Bay which dissipates rapidly eastward, but extends northward and westward to the
model boundary with almost 10 ft of drawdown at these extents. Drawdowns in model layer 5 are
up to 120 ft around the pumping centers off Choctawhatchee Bay, with mounding of up to 160 ft
near the injection regions in the Lower Floridan Aquifer.

The water budget for pre-development conditions is shown in Table 5.3. The recharge of 20 in/yr
again translates to a total inflow of 7,270.8 Mgal/d. Rejected recharge prevents water levels in the
Sand-and-Gravel Aquifer from exceeding land surface via drain boundary conditions, and totals
2,355.1 Mgal/d. This is about 11.6 Mgal/d more than for the 1990 pumping simulation case, which
induces the extra recharge due to pumping. Other sources of water to the system includes lateral
general head boundaries totaling 20.1 Mgal/d, which is 3.5 Mgal/d less than the 1990 pumping
simulation case. The rivers in model layer 1 reject recharge as well as drain the Sand-and-Gravel
Aquifer, and remove 4,216.2 Mgal/d from the system. The Floridan Aquifer drains directly into the
Choctawhatchee River and Holmes Creek in the amount of 333.5 Mgal/d for this simulation, as
calculated from river fluxes in model layer 3. Other outflux of water occurs along the constant head
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boundaries within bays and the Gulf of Mexico totaling 296.4 Mgal/d and via lateral general head
boundaries totaling 89.7 Mgal/d. A negligible mass balance error was noted for the simulation.

5.11 MODEL SENSITIVITY ANALYSES

A series of sensitivity runs were performed to determine sensitivity of 1990 simulated water levels
to variations in calibrated model parameters. Significant parameters that affect the Floridan Aquifer
system include recharge, leakance of the Intermediate System, and transmissivity of the Floridan
Aquifer system. These parameters were individually investigated in the sensitivity analyses with all
other parameters kept at the calibrated (base case) values. Each sensitivity analysis is subject to four
additional realizations, with a range of variability equal to that expected at the site, with two
realizations being on the higher side, and two on the lower side of base case values.

5.11.1 Sensitivity to Recharge

For this sensitivity analysis, the recharge value of 20 in/yr was increased uniformly to 23 in/yr and
26 in/yr, and decreased uniformly to 17 in/yr and 14 in/yr to test its effect on the calibrated system.
Figure 5.35 shows a plot of the RMS residual versus the recharge rate, depicting that the residuals
do not change significantly with recharge rate. The RMS error increases slightly for both the higher
and the lower recharge rates. In both instances the increase is very modest. Figures 5.36, 5.37 and
5.38 show the effects of changing the recharge to 26 in/yr, on water levels in model layers 1, 3 and
5 respectively. The plots depict the difference in water level values from the calibrated base case
conditions for each unit (i.e., base case head value minus sensitivity simulation head value). The
higher recharge value increases water levels in model layer 1 by as much as 15 ft, mostly in the
western half of the domain, with little change in the eastern half where excess recharge is being shed
by the drain boundary conditions. In model layers 3 and 5, heads are higher by up to 3 ft for recharge
of 26 in/yr, than for the base case, with the largest differences occurring in the northern portions of
Okaloosa County and in Bay and Washington counties where the Intermediate System is thin. Since
recharge variation causes insignificant changes in calibration residuals or model conclusions, the
model has a Type I sensitivity to recharge (ASTM D5611-94), which is of little concern to the
system.

5.11.2 Sensitivity to Floridan Aquifer Transmissivity

For this sensitivity analysis, the transmissivity values of model layers 3, 4 and 5 (representing the
Floridan Aquifer system) were multiplied by scaling factors of 0.6, 0.8, 1.2 and 1.4 throughout the
domain to test its effect on the calibrated system. Figure 5.39 shows a plot of the RMS residual
versus the scaling factor on transmissivity. The RMS error increases considerably for both lower
and higher transmissivity values from the base case, being larger than thirty-five ft when the base
case transmissivity is multiplied by a factor of 0.6. Figures 5.40, 5.41 and 5.42 show the effects of
a scaling factor of 1.4, on water levels in model layers 1, 3 and 5 respectively. The plots depict the
difference in water level values from the calibrated base case conditions (i.e., base case head value
minus sensitivity simulation head value). Increasing the Floridan Aquifer transmissivity does not
affect the Sand-and-Gravel Aquifer heads significantly. In model layer 3, however, the larger
transmissivities provide higher heads (by about 35 ft) near the pumping centers around
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Choctawhatchee Bay, than for the base case. Thus, the drawdowns are not as pronounced due to
larger fluxes reaching the pumping centers. A similar situation occurs in model layer 5 around the
cone of depression, with heads higher than the base case by about 30 ft. Further, the injection in
Escambia and Santa Rosa counties does not provide as pronounced a mound with water levels being
lower by about 60 ft at the injection locations than for the base case, due to the more rapid
dissipation allowed by the higher transmissivity values. Since transmissivity variation causes
significant changes to both calibration residuals and model conclusions, the model has a Type III
sensitivity to transmissivity of the Floridan Aquifer system (ASTM D5611-94) which is of little
concern since even though model conclusions change as a result of variation of the input, the
variation of the parameters causes the model to become uncalibrated and the calibration procedure
eliminates those values from being considered as realistic.

5.11.3 Sensitivity to Vertical Conductivity of the Intermediate System

For this sensitivity analysis, the vertical hydraulic conductivity values of the Intermediate System
were multiplied by a scaling factors of 0.5, 0.75, 2.5 and 5 throughout the domain to test its effect
on the calibrated system. MODFLOW accepts the vertical leakance as input for each model layer,
which is equal to the thickness-weighted harmonic mean of the vertical conductivities of the layer
and the one beneath it, divided by the vertical nodal distance. Hence, the leakance of model layer
1 represents the mean vertical conductivity of the Sand-and-Gravel Aquifer and the Intermediate
System. The leakance of model layer 2 represents the mean vertical conductivity of the Intermediate
System and of the upper limestones of the Floridan Aquifer. Since the harmonic mean biases the
mean value towards the lower one, these vertical leakances practically represent the vertical
conductivity of the Intermediate System, which is orders of magnitude smaller than of its adjacent
units, the Sand-and-Gravel Aquifer, and the Upper Floridan Aquifer unit. Hence, these scaling
factors can be directly applied to the vertical leakance values for model layer 1 and model layer 2.
Figure 5.43 shows a plot of the RMS residual versus the scaling factor on the vertical conductivity
of the Intermediate System. A scaling factor of 0.75 on the vertical hydraulic conductivity of the
Intermediate System provides little change to the RMS error, which then increases to about 18 for
a lower scaling factor of 0.5. For higher scaling factors of 2.5 and 5, the RMS error is noted to
increase considerably, up to almost 30 ft. Figures 5.44, 5.45 and 5.46 show the effects of a scaling
factor of 5, on water levels in model layers 1, 3 and 5 respectively. The plots depict the difference
in water level values from calibrated base case conditions (i.e., base case head value minus
sensitivity simulation head value). Water levels in model layer 1 decrease by as much as 10 ft in
eastern regions of the domain for increased vertical hydraulic conductivity of the Intermediate
System, as more water flows through to the lower layers. In the western portions of the study area,
water levels are not affected significantly, since the Intermediate System is very thick in these
regions and provides sufficient confinement even with higher conductivities. Water levels in model
layers 3 and 5 are noted to increase by as much as 40 ft from the base case, with model layer 5 being
a muted replica of model layer 3. Little change is noted between this sensitivity case and the base
case, in regions where the Floridan Aquifer communicates directly with the Choctawhatchee River
and Holmes Creek since this feature is the controlling feature for leakance. Since varying the
vertical conductivity values of the Intermediate System causes significant changes to both calibration
residuals and model conclusions, the model has a Type III sensitivity to this parameter (ASTM
D5611-94). Type III sensitivities are of little concern since even though model conclusions change
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as a result of variation of the input, the variation of parameters causes the model to become
uncalibrated, and the calibration procedure eliminates those values from being considered as
realistic.
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6.0 SUMMARY AND CONCLUSIONS

A ground water flow model has been calibrated for a portion of the Floridan Aquifer system within
the Northwest Florida Water Management District, shown in Figure 1.1. Available hydrologic data
in the region and previous modeling studies were first examined to develop a conceptual model of
the system. A numerical representation was then developed, for simulation using the ground water
flow code, MODFLOW. The model was calibrated using May 1990 potentiometric surface and
average daily rate pumping conditions and validated against estimated pre-development conditions
for the system. Calibration errors were within 2.46 ft for mean average heads and within 12.56 ft
for RMS residuals of heads in the Floridan Aquifer system. The calibrated model is unbiased with
respect to head values as well as their spatial distribution.

Sensitivity analyses were also conducted on significant parameters of the system. Recharge,
transmissivity of the Floridan Aquifer system, and vertical hydraulic conductivity of the Intermediate
System were identified as critical parameters for the study. The Floridan Aquifer system is noted
to be insensitive to recharge boundary conditions applied to the model, indicating a Type I
sensitivity. Type III sensitivities are noted for transmissivities of the Floridan Aquifer system and
for vertical hydraulic conductivities of the Intermediate System. Thus, model results as well as the
calibration statistics are affected by these parameters.

The model may be applied for investigations of the impacts of various long-term future pumping
strategies from the Floridan Aquifer system and on Floridan Aquifer water levels. The model may
also be used as a baseline for conducting more detailed investigations of water resource evaluation
using transient analyses, for saltwater intrusion analyses and for further investigations concerning
the Sand-and-Gravel Aquifer. Once additional data from different years becomes available, the
model should be further tested to verify its range of predictive capability.
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Table 5.2  Calibrated Model Water Budgets for 1990 Pumping Conditions

Water Budget Component

Inflow

Overland Recharge

General Head Boundaries

Injection Wells

Constant Head Boundaries in bays and Gulf of Mexico
Total Inflow:

Outflow

Rejected Recharge (Upland Drain Boundaries)

River Boundaries in Layer 1

River Boundaries in Layer 3

General Head Boundaries

Pumping Wells

Constant Head Boundaries in bays and Gulf of Mexico

Total Outflow:

Flow (Mgal/d)

7270.8
23.6
3.0
5.4
7302.8

23435
4208.8
331.6
88.4
42.3
288.2
7302.8




Table 5.3  Calibrated Model Water Budgets for Pre-development Conditions

Water Budget Component

Inflow

Overland Recharge

General Head Boundaries

Constant Head Boundaries in bays and Gulf of Mexico
Total Inflow:

Outflow

Rejected Recharge (Upland Drain Boundaries)

River Boundaries in Layer 1

River Boundaries in Layer 3

General Head Boundaries

Constant Head Boundaries in bays and Gulf of Mexico

Total Outflow:

Flow (Mgal/d)

7270.8
20.1
0.0
7290.9

2355.1
4216.2
333.5
89.7
296.4
7290.9
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Observed Head (ft)

Figure 5.27 Scatter Plot of Simulated Versus Measured Heads
for the Calibrated Simulation of 1990 Pumping Conditions
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Frequency

Figure 5.28 Frequency Distribution of Ground Water Residuals
for the Calibration Simulation of 1990 Pumping Conditions
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Figure 5.35 RMS Error Sensitivity to Recharge
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Figure 5.39 RMS Error Sensitivity to Floridan Aquifer Transmissivity
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Figure 5.43 RMS Error Sensitivity to Vertical Hydraulic Conductivity of
the Intermediate System
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